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PREFACE.

The object of this work is to supply the wants of

those students who, for reasons connected with ex-

aminations or otherwise, wish to have a knowledge

of "the elements of Elliptic Functions, not includ-

ing the Theory of Transformations and the Theta

Functions." It is right that I should acknowledge

my obligations to the treatise of Professor Cayley

and to the lectures of Dr. Glaisher, as well as to

the authorities referred to from time to time. I

am also greatly indebted to my brother, Mr. A. L.

Dixon, Fellow of Merton College, Oxford, for Ids

kind help in reading all the proofs and working

through the examples, as also for his valuable

suggestions.
A. C. DIXON.

Dublin, October, 1894.
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ELLIPTIC FUNCTIONS.

CHAPTER I.

INTRODUCTION. DEFINITION OF ELLIPTIC
FUNCTIONS.

§ 1. In the earlier branches of mathematics func-

tions are defined in various ways. Some are the

results of the fundamental operations of algebra.

x+ 1, 2x, x2 are such functions of x. Others are in-

troduced by the inversion of those operations ; such

are x— 1, 1/x, ,Jx\ and others by conventional ex-

tensions of them, as a> , ex. It is not easy to draw
the line of distinction between the two last-named
classes. Sometimes, again, geometrical constructions

are used in the definition, as in the case of the

trigonometrical functions.

§ 2. The elliptic functions cannot readily be defined

in any of the foregoing ways ; their fundamental
property is that their differential coefficients can be

expressed in a certain form, and as this is a somewhat
new way of defining a function, we shall take one or



2 ELLIPTIC FUNCTIONS.

two examples to show that it is as effective as any of

those above mentioned.

$ 3. Let us define the exponential function by the

equation

d
-j- exp u= exp u.

This equation tells us what addition is to be made
to the value of exp u when a small change is made in

that of u, and would therefore enable us gradually to

find the value of the function for every value of the

argument u, provided we knew one particular value

to start with. Suppose then that when u has the

value 0, expu has the value 1, that is, exp = 1.

This equation combined with the former supplies a

definition of the function exp u*

§ 4. From the foregoing definition we can deduce
the properties of the function exp u. First of all we
can find an expression for exp(w+v).

Let u-\-v= iu, and suppose w to be kept constant

while u and v vary.

mi d d
j hen exp-y = —— exp v= — exp v.

Thus exp u .
-,- exp v+ exp v . -j- exp u= 0,

or -j- (exp u exp v) = 0.

Hence expu exp v is a constant as long as w is a

constant, and has the same value whatever we may
put for u and v so long as ii-\-v — iv.

* Compare the construction of trigonometrical tables, as explained

in works on Trigonometry. The sine, tangent, etc., of every angle

are found hy adding the proper increments to those of an angle

slightly less.
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Put then v= 0, u= iv, and we have

exp u exp y= expwexpO= exp(u+v), since expO= l.

§ 5. We can also deduce the expansion of exp u in

powers of u.

F< >r -=— exp u = exp u,
(In l L

<1- </
so that -=—g exp w = --,— exp u = exp u,

(.(jU/ it lb

^ expU = expU
'

which = 1 , when u= 0.

Thus Maclaurin's Theorem gives

u2 26''
,

exp w= 1+^+27+...+^-+.-.,

the convergency of which may be established in the

usual way.

§ 6. As another example, define the sine and cosine

by the equation
cL

-Y- sin u= cos u, (1

)

du

w 1 1 ere cos2u -\- sinhi = 1, (2)

and sin = 0, cos = 1.

§ 7. Differentiating (2), we have

d
i • acos u-y- cos u+ sin it cos u — 0,

whence -j- cosu= —sin 26, (3)
dtt

as cos it is not zero in general.
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§8. To find sm(u-\-v) and cos(u+ v) put u+ v = w,

a constant, as before.

Consider a symmetrical function of u and v, such

as sin u+ sin v.

d , .
,

. .

-=-(sm u+ sin v) = cos u — cos v.

a u,

In the same way

& / > \ i

-7—(cos u+ cos -y) = — sm u+ sin v.

But cos2u+ snr% = cos2y+ sin2
y,

so that (cos u— cos y)(cos u+ cos v)

= ( — sin u + sin v)(sin u + sin v) (4)

Hence (cos u+ cos v), (sin u+ sin v)
QjiXi

— (sin u+ sin v) -

7
--- (cos u+ cos v),

,, sintt+ sinv , sin(tt+ i;) /K v

so that = a const. =—7-^-—^-r^r* (5)
cosw + cosv cos(it+ v)+ l

putting iv for u and for v.

Then from (4) and (5)

— sin u+ sin v , ,— = a const, also,
cos u— cos v

sin(u+ v)
~

1 .
— cos(u+ f

)

And we find by solving

. . . sinau— sin2v
sin(u+v)= .

v y sin u cos v— sm v cos it

= sin u cos ?; + sin -y cosu by help of (2).

Bere again the functions may be expanded by

Maclaurin's Theorem.
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$ 9. The equations of definition are satisfied also if

we change the signs of a and of sin it. Thus

sin(—u)= —sin u,

cos(—ii)— COS u.

The equations (1) and (2) are also satisfied if cosu
is put for sin it and — sin it for cos it. The initial

values however are now different and a constant must
be added to u. Call this constant T3.

Then sin(u+ cr)= cos u,

cos(u+ cr) = — sin u,

if £» is such that sin or= 1 , cos ts = 0. Hence

sin(ifc + 2~) — cos(u + ui) = — sin u,

cos(tt+ 2<tt)= — sm(u + G7)= — cos u,

sin( tt + 4~) = — sin(it+ 2^7) = sin a
,

cos(it + 4o7)= — cos(tt+ 2o7)= cosu.

Hence the functions are unchanged when the argu-

ment u is increased by 4sj, that is to say, they are

periodic.

§ 10. Again, writing i for *J — \,

d
j-(cos it -+- i sili ?t) = t(cos tt+ 1 sin it),

tZ . . • Xor — (cos u+ 1 sin it) = cos u + 1 sm u,

and cos + t sin 0=1,

so that cos u+ i sin u = exp t u

.

This equation includes De Moivre's Theorem, and
shows that exp u is also periodic, the period being 4tcnr.

These examples may be enough to show that func-

tions which we know already can be defined in the

way that was mentioned in § 2.
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§ 11. Now the three elliptic functions sn u, en u,

dn u * are defined by the equations

d .

-?— sn u = en u dn u,
du

cvru+ sn2u = 1
,-f-

dn2
i6+ k2sn2u = 1

,

snO= 0, cnO=dnO= l.

From these it follows at once that

d ,

7 en u = — sn u dn u

,

an

- dn u = — /j
2sn u en u.

(in

The quantity /»; is a constant, called the modulus

;

u is called the argument.

§ 12. For different values of the modulus h (or, per-

haps, rather of k2, as the first power of Jc does not
appear in the definition) there will be different values

of the elliptic functions of any particular argument,
in fact, sn u, en u, dn u are really functions of two
independent variables, and when it is desirable to

call this fact to mind we shall write them

sn(w, Jc), cn(i(, /), dn(u, k).

We shall also use the following convenient and
suggestive notation, invented by Dr. Glaisher:

—

en u/dn u = cdu, sn u/cn u = sc u
,

dn u/cn u = dc u, 1 /sn u= ns u,

l/cnu=ncu, etc.

It is usual to write // for (1 —k2
y, and k' is called

the complementary modulus.

*Read s, n, u—c, n, ?t—d, 11, 11.

+ Here and elsewhere sn'-'«, etc., stand for (sn «)-', etc., as in

Trigonometry.
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The reader will not fail to notice the analogy
between the two functions sn u and sin u, as also that

between cosu and either cnu or dnu. (Compare

§§ 74-75 below.)

EXAMPLES ON CHAPTER I.

1. Find the value of tan(u+ v) in terms of tan it

and tan v from the equations

-y- tan it = l+tan2
it, tan = 0.

du

2. Prove also that tan u is a periodic function of u,

the period being twice that value of u for which tan u
is infinite.

3. Find the value of sech(u+ i>), given that

1— sech u — — sech u tanh u,
du

where sech2
w-+ tanh%= 1

,

and that sech = 1, tanh = 0.

4. Find the differential coefficients with respect to

vu of ns u, nc u, nd u, sc u, sd u, cs u, cd u, ds u, dc u.

Ans. —csudsu, scudcu, k2sducdu, ncudcu,
nducdu, — nsudsu, — k"2sdundu, — csunsu,
&'2sc u nc u.

5. Differentiate with respect to u

(1 ) sn w/(l + en it). Ans. dn uj(l + en u).

(2) snzt/(l + dnu). Ans. cnu/(l+dnu).

(3) cnu/(l+snit). Ans. — dnu/(l + snu).

(4) dnu/(l + &snu). J.i?s. — &cnw/(l+&snu).

(5) arcsin sn u. J.?is. dntt.

(6) sn u/(dn u — en u ). Ans. 1 /(en it — dn w,).



CHAPTER II.

FIEST DEDUCTIONS FROM THE DEFINITIONS.
THE PERIODS. THE RELATED MODULI.

§ 13. It follows from the foregoing definitions that

if a function S or S(v) of a variable v satisfies the

equation
JO~ = GD, (1)
dv

where C and D are other functions of V connected

with 8 by the equations

Cz+S*=l, (2)

D2+A2£2=l; (3)

then flf= sa(v+ a, A), (4)

0= cn(y+ «, A), (5)

D = dn(v+ a, A), (G)

where a is such a constant that

sn(a, \)=S(0), (7)

cn(«,A) = G'(0), (8)

dn(a, A) = iJ(0), (9)

these last equations being clearly consistent.
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§ 14. Now, in the first place, the foregoing con-

ditions hold if we put

S= —snu, G=cmi, D = dnu, X=k, v=—u, a — 0;

and thus sn( — u) = — sn a, \

cn( — n) = en it, }• (10)

dn( — u) = dn u, J

or en and dn are even functions, and sn is an odd
function.

§ 15. We have also

__ sc u = (en2
it dn it+ sn2n dn u)/crihi

du
= dn ufcn2u= dc u nc u,

and in the same way

t- nc it = sc u dc u,
du
d

,
, /2

-y- dc it = k -sc tt nc u,
du
d -,

-r- cs it = — as tt ns it.

du
d ,

--,— ns u = — cs it ds it

,

cut

t£ ,

-y— ds it = — cs it ns it,

ait

-j— sd u = cd it nd it,

au

-j— cd it= — //-sd ?t nd u,
an

t— nd.it= &2sd a cd u (11)
ait

By integrating these equations we shall deduce
several important theorems.
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§ 16. Take for instance

-5— cd u= — 7c'
2sd it nd it.

ctu

We have cn2u+ sn2
tt = 1

,

dn'it+ 7v
2sn2u = 1

;

and dividing by dn2u,

cd2w+ sd2
it = nd2w,

1 + k2sd2u = nd2u.

Hence fc'
2sd2tt+cd2u= l, by elimination of nd-it,

and /c
/2nd2t*+^2cd2u= l, by elimination of sd2

it.

In the equations (1) ... (6) of this chapter we may
therefore put

$= cdu, C=— Jc'b&u, D — k'ndu, \ = k, v= u.

The value of a is such that

sn a= 1, en a = 0, dn a = k'.

Let us write K for this value of a ; then we have

sn(u+K)= cdu, \

cn(w+K)=-Vadu,
[

(12)

dn(u+K) = k'nd u. J

§ 17. From these it further follows that

sn(u

+

IK)= cd(u+ iT) — - /c'sd it -r- k'nd u=- sn 16

,

cn(u+ 27i ) = — &'sd(it

+

K)= - /o'cd it -f- k'nd u = -cnu,

dn(u+ 2K) = k' -4- dn(n+K)= dn u.

Also sn(?/<4-3/f) = — sn(ii+ iO = — edit,

cn(u+ 3iT ) = /e'sd it,

dn(it+ SK ) = A/nd w,

sn( it+ 4 7tT ) = — sn(u+ 2K ) = sn it,

cn(it+ 4/i ) = en u,

dn(it + 4/i") = dn u.
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Again, sd.(K—u) = cd( — u) = cd u,

cn(K-it) = fc'sd u,

dn(A"— u) = Z/nd a.

Thus the function dn u is unaltered when its

argument is increased by 2K ; snw and cnu are

unaltered when the argument is increased by 4A", that

is to say the functions are periodic.

§ 18. Take now the equation

d ,
-
7
— nsw= — cs u ds u,

clu

where — cs2u+ns% = 1

,

— ds2u+ ns2u = /;
2

.

Here we may write

S=ynau, C=ydsu, D= lCSU, \ = k, v= u,

but sna, en a, dna are all infinite. We have, however,

cs« = <, dsa= tk.

Let this value of a be called L for the time being.

Then sm>+ i) = vnsu,

cn(u+ L) = rchu,

dn(u+ L)= tcsu,

m(u+2L)= sau,

cn(u+ 2L) = — en u,

dn(it+2Z/)= — dnu,

cn(u+ 3//) = — j ds u,

dn(u+3i)= — i csu,

cn(w+ 4Z)= enw,

dn(i/+4A) = dnu.

.(13)
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§19. Also

sn(u+K+ L) = j ns(w +K)=y dc a,
K rC

cn(u+K+L)= T ds(u+K ) = — nc u,

dn(u+ K-\- L) = t cs(u+ K) = — t/c'sc it-,

sn(u+ 27i> 2Z) = - sn u,

cn(u+ 2K+2L)= cnu,

dn(u+2K+ 2L) = - dn u.

§20. Hence

sn u has a period 2L as well as 47i

,

en u has a period 27JT+2Z as well as 4>K,

dn u has a period 4<L as well as 27v\

We may also notice that

an(K+L)= \, cn(K+L) = ~, dn(K+L)= 0.
K K

THE COMPLEMENTARY MODULUS.

§ 21. Now consider the first equation of the system
(ii).

d ,

scu=dcimcw,
au

where nchi — sc2w= 1

,

dc2u— k"2se2u= 1.

Hence we may put

S= ihcu, C= ncu, D = dcu, v = tu, A = /,;',

in the equations (4), (5), (6); and as

,S'(0) = 0, C(0)= Z)(0)= 1,

we have a = 0.
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Thus sn(iu, k') = i sc(w , k),

cn(iu,k') = nc(u,k),
\ (15)

[u, ic),-\

% h), .

dn{( u,k') = dc(ii,k).)

These equations are of great importance. They
embody what is called Jacobin Imaginary Trans-

formation and enable us to express elliptic functions

of purely imaginary arguments by means of those of

real arguments with a different modulus.

§ 22. In the equations (15) put L for u.

Then tm(lL, k') = i sc(X, k) = 1

,

cn(lL,J<f)=0,

dn(iL,k') = h

Thus iL stands to k' in the same relation as K to k,

and we are naturally led to write

iL = K', L=-iK'.

Thus if m and n are any two whole numbers

m(w+2mK+2mK')=(-l)msnu, )

cn(u-+ 2mK+ 2niK') = ( - l)'"+»cn u, I (16)

dn(u+2mK+ 2niK') = ( - l)ndn u.

We have then the following scheme for the values of

sn, en, dn, of u-\-mK+niK', m and n being integers :

n =

n

m = 0,



14 ELLIPTIC FUNCTIONS.



RELATED MODULI. 15

as /," is less than 1. Also with the same provision K
is a purely real positive quantity as every element in

the integration is so.

Further, /.:' is to be the positive value of (1 — l
,2
)'\

for (In u does not change sign within the limits of

integration and k' — dn K.

§ 24. Again, so long as k'
2

is less than 1, K' is also

a purely real positive quantity.

Thus for values of the modulus between and 1

the periods 4<K and ^iK' are the one real, the other

purely imaginary.

We shall now show how to reduce elliptic functions

in which the square of the modulus is real, but not a

positive proper fraction, to others in which the modulus
lies between and 1.

S 25. We have -r sn u = en u dn u,
aw

cn2u+ sn2,
u. = 1

,

dn%+ k2m2u = 1

,

and we may put

C= dnu, D = cnu,

provided we have

S = ksnu, X = l/k, v = ku.

Furthermore a = 0.

Thus m(Jcu, 1//.:) = k sn(u, k),
~\

cn(ku, 1/k) = dn(u, k), - (17)

dn(hi, l//>')= cn(w, /«•).
J

The equations (17) enable us to reduce the case of

a modulus numerically greater than unity to that of

one less than unity.
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§ 26. From the equations (15) and (17) we deduce

sn(ik'u, l/k') = k'sn(iu, k') = iJcsc(u, k),
}

cn(ik'u,l/k') = dn(iu,k')= dc(u, k), I (18)

dn(tk'u, 1/7/)= cn(tu, k')= nc(u,k),j

and also, since ik'/k is the modulus complementary
to 1/k,

sn(iku, ik'/k) = i ee(1cu, 1/k) = ik sd(w, k)\

cn(iku,ik'/k) = nc(ku,l/k) = nd(u, k), I (19)

dn{iku, ik'/k) = dc(ku, 1/k) = cd(u, /r),J

and from (19) by help of (15)

sn(&'w, i A;///) = — ik'sdyiu, k') = k'sd(u, k),"\

cn(k'u, ik/k')= nd(iu,k') = cd(u
)
k)\...(2Q)

dn(k'u, ik/k') = cd(iw,k') = nd(u, k),\

§ 27. The quantities corresponding to K, iK', the

quarter-periods, are given in the following table for

the group of six related moduli

:

—
First Second

Modulus. Quarter-period. Quarter-period.

k, K, iK',

k', K\ iK,

1/k, k(K-tK'), ikK',

1/K, k'(K'-iK), iKK,

tk'/k, kK', MK'+iK),
ik/k', k'K, LXK+iK'),

the distinction being that sn = l and dn = the com-
plementary modulus for the first quarter-period,

and that for the second sn, en, dn are infinite and
proportional to i, 1 and the modulus.

§ 28. We can prove that if the modulus is a real

proper fraction the elliptic functions of a real argument
are real.
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For as sn u increases from to 1, while cnit de-

creases from 1 to 0, and dn n from 1 to h' , the argument
u increases continuously from to K, so that for any
value of a between and K, sun, en it have real

values between and I , dn n has a real value between
/•' and 1.

Also we see from §§ 14, 17 that

sn(2ii ~u)= sn u,

cn(2K— u) = —en u,

dn(

2

K— u ) = dn a,

so that when u lies between K and 2K.

sn ul is real and between and 1,

en v, „ „ and — ]

,

dnu „ „ 1 and //.

Again, sn( — u)= — sn u,

cn(—u)= cnu,

dn( — u) = dn u,

so that sn u, en u, dn u are also real for values of u
between and — 2K.

Also sn(u+ 4<K) = sn u , etc.

,

so that, as any real quantity can be made up by adding
a positive or negative multiple of 4>K to a quantity
between ± 2K, sn u, en u, dn u are all real if u is real.

They are also real if u is a complex quantity whose
imaginary part is a multiple of 2tK', for

sn(i(,+ 2iK') = sn u,

cn( a+ 2lK') = — en u,

dn(u+ 2iK')= -dnu.

§ 29. Further, when the imaginary part of u is iK',

or an odd multiple of it,

sn u is real,

en w and dn 16 are purely imaginary,
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for sn(u+ / K') = 1 jk sn u
,

cn(it+ iK') = — i dn u/& sn it,

dn(u+ lK') = — i en it/sn it.

Again, since sn(m, A;) = (sc(u, k'),

cn(iu, k)= nc(u, h'),

dn(tu, k)= dc(u, k'),

it follows that for a purely imaginary argument or a

complex argument whose real part is a multiple of 2it

sn is purely imaginary,
en and dn are real.

Also, for a complex argument whose real part is an
odd multiple of K

sn and dn are real,

en is purely imaginary,

for sn(K+iu, k)= cd(iu,k) = nd(u, k')
}

cn(K+ Lii, k) — — //sd(Y«, k)= — i&'sd(u, //),

dn(JT+tu, k)= k'nd(tu, k)= k'cd(u, //).

§ 30. It is to be noticed that one of the periods at

least is always imaginary or complex, and it may be
proved that their ratio cannot be purely real.

For let o)
1
and <o2 be two periods of a function </>(u)

so that

<p(u)= 0( &+ w-l) = <f){u + Co.,) = (j>(a + mwi+ vwt),

m and n being any integers. Also let wJ(jo2 be real.

Two cases arise. If w
x
and w

2
have a common

measure w let

w-y—pWy u>
2
= qu),

p and q being two integers prime to each other.

Then integral values of m and n can be found such
that mp+ nq = l,

so that (j)(u+ o>) = 0(u),

and the two periods wv w
2
reduce to one, w.
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$ 31. But if, on the other hand, w
1
and o>2

are incom-

mensurable we can prove that mw^nw., maybe made
smaller than any assignable finite quantity.

For Let \a>2 be the nearest multiple of co., to <ax )
then

w1
~ Xco.

2(
= co3 , say) is less than |a>2 .

hrt //av. be the nearest multiple of <o3
to to2 ;

then

to2
~ /uo)3 , or w4 , is less than |<o3 ,

and so on. Then

w-z+ r is less than ^.ft>2 ,

which can be made smaller than any assignable finite

quantity by taking- r great enough. Also each of the

quantities w3 , wv ..., is of the form mco
1
-\-nw.z , so that

the statement is proved.

In this case then if
(l>(K

ii-\-mw
l
-sr

r
iiw.

2} = (p(ii), the

value of the function is repeated at indefinitely short

intervals, and the function must be either a constant

or have an infinite number of values for each value of

its argument.

§ 32. It may be proved that the same kind of con-

sequences will follow if a function is supposed to have
three periods whose ratios are complex.

We shall represent the argument of the function on
Argand's diagram, in which the point P whose coor-

dinates are (x, y) referred to rectangular axes OX,
OY, represents the complex quantity x-\-i>/. The
statement that a straight line AB is a period will be
understood to mean that if from any point P a line is

drawn parallel to AB and equal to any multiple of it

the value of the function is the same at the two ends
of the line.

Now let A , OB be two periods. Join AB. Through
0,A,B draw lines parallel to AB, BO, OA respectively.

Through their intersections draw other lines in the
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same directions and continue the process till the whole
plane is covered with a network of triangles, each
equal in all respects to the triangle GAB. Then any
line joining two vertices of triangles of the system is

a period, since each side of any triangle is one.

The triangles can be combined in pairs into paral-

lelograms, all exactly alike, and similarly situated, and
the values of the function at points similarly situated

in different parallelograms will be the same. Such a
parallelogram is called the ' parallelogram of the

periods.'

Suppose, however, that there is a third period OG;
then G must fall within or on the boundary of one
triangle of the network. If it fall at an angular point

then OG is not a new period, but is only a combination
of OA and OB. If it fall on a side of a triangle, say
BE, then BG and GE must be periods, and their ratio

is real, since they are in the same direction ; thus this

case reduces to the one already discussed.

If G fall within a triangle, say BEF, then OB, GE,
CF are all periods. Let G be the point similarly

situated within the triangle OAB, then OG, AG, BG
are all periods being respectively equal to GB, GE, CF
in some order. Any of the triangles OBG, BAG,A0G
may now be taken as the foundation of another net-

work covering the whole plane, and since there is

still a third period, we can again find a point within

the fundamental triangle with which to carry on the

same process. We can prove that ultimately either

the point will fall on the boundary of one of the

triangles, which case has been discussed above, or

a period can be found shorter than any assigned

finite straight line.

We shall form each triangle from the one before

it as follows. Let Oab be a triangle of the series, and

g the point found within it. Let Oa^Ob. Then we
take Obrj as the next triangle of the scries.
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Let e be any finite length, then we shall prove
that a period can be found shorter than e. Suppose
that none such can be found among the sides of such
triangles as ABG, . .., abg, ..., which have not for

a vertex.

The angle Oab is always acute, and can never be
greater than \tt— fi where /3 is some finite acute angle.

For if there is no such limit, and Oab can be made to

approach 7r/2 without limit, then since Oba^Oab,
a Oh can be diminished without limit, and therefore

ah can be made less than e.

If Oh is drawn perpendicular to ab and g falls

within the triangle Ohb then 0<j < Ob.
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e sin i/3, and therefore less than e. Each of these p.

stages will consist of a finite number of steps by which
the originally greater side of the triangle is gradually

diminished till it becomes the less, followed by another

step in which that which was the less originally is

itself diminished.

It is proved then that if there are three periods

Wj, to2 , o)3 , either they are not independent but satisfy

an identity of the form ta^+ mco
2+ w«

3
= with in-

tegral coefficients, or else a period can be found whose
modulus is smaller than any assignable finite quantity,

so that the function has an infinite number of values

for any single value of its argument. It might of

course be a constant.

EXAMPLES ON CHAPTER II.

1. Prove that each of the twelve functions snu,
en u , ns u, ... , can be expressed as a multiple of the sn

of an integral linear function of u with one of the six

related moduli, in two ways, e.g.

dn(u, k)= k'an(K'—iK—iu, //).

= m(VK' -ik'K-Mu, 1/Jc').

2. What are the periods of the functions sc u, dc u,

,
sntt en u , 9 snw .

dsw, =—- —,
q—r — , snitcdit, sirw, ^—n—o~ ?

1 + en u 1 + sn u 1 + «sn%
3. Putting S for sn usn(u-\-K), verify that

jfc=jp{dRhi-dn\u+Z)}, (1)

{dnu+Mu+K)} 2+teS2= Q-+K)\ (2)

{<\n u - dn(u+ K)} 2+ L
AS2 = (I -1/f (3)

Deduce that

(1+^)5=811^(1+70,^},
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and find the values of

cnju(l+A0, iXFj an(1 dn|u(l+AO, Y^\
4. Putting S for sn u dc u, prove that

(i^j = l + 2(A'2 - W)S2+ S*.

5. Verify that

&n
t
( + } ''f+XJ"i +/-•-'

f 2$ } cd
cn|(l+*K

T^j =IW
dn

l
(1+i)tt, Hiri+p

where s, c, cZ are sn(u, A:), cn(tt, A'), dn(u, fc), respectively.

6. If k = J2 - 1, prove that

snw(— 2)*=(— 2)*scund ",

en u( — 2)~ — nc u nd it+ A' sc u sd it,

dn u( — 2)* = nc it nd it— A; sc u sd u.

Hence prove that for this value of h,

K'jK=J2.

7. If A = sin 75°, verify that

sn u{ - 3)- = i sc it(4v/3 - 6 - sn2u)/(4 - 2^/3 - sn2
tt),

en u( - 3)* = (2 - x/3)(2 -x/3sn2w)/cn w(4 - 2^/3 - sn2
it),

dn it( - 3)
4 = (2- x/3)dc u(2 - sn%)/(4- 2*/3 - sn2

it).

Prove also that for this value of A,
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8. Find the expansions of snu, cnu, dn u. in ascending
powers of u as far as it

5
.

Ans. sn u =u- J-(l + k2)us+ T^(l + Uk*+J<*)v,5 . .
.

,

en u= 1 - iw2+JT( 1 + 4A;2 )ii
4

. .
.

,

dn u= l-^k2u2+-^(4!k2+ki
)ii

i
....

9. Trace the changes in sign and magnitude of

sn, en, dn for real and purely imaginary arguments
for all real or purely imaginary values of k.



CHAPTER III.

ADDITION OF ARGUMENTS.

§ 33. We shall now show how to express the sn,

en, and dn of the sum of two arguments in terms of

the elliptic functions of those arguments themselves.

Let itj and u
2
be the two arguments and let us

write slt cv d
x
for sn u^, cnu1( dn w,p and s

2 , c2 , d2
for

sn u
2 , en u2 , dn v,2. This notation will often be found

convenient.

Suppose u^ and u
2
to vary in such a way that their

sum is constant, say a.

Then u. + u„= a, -,—?= — 1

.

1
" du

x

Consider now some symmetric functions of u
x
and

v .,, as sn Wj + sn u
2 , sn i^cn v

2+ sn u
2
c\\ uv etc.

We have

_(Sl+ s
2 )

= c
x
d

x
-c

2
d

2 ,

f ' t '
|

= (d
1-d2Xc1c2 --s1s2).

^- (cZ
x+ d2)

= - /.•
2
(s

1
c
1
- s

2
c
2)

= - hVi(c2
2+ *2

2
)+&V2(Ci

2+ «!*)

= - ^(c^g - s
1
.s\
2
)(s

1
c
2
- -v^).
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Now -A%V - s
2V) = - k\Sl

2 - *
2
2
) = d^ -<Z

2
2

,

and thus we have

d d
(
(}

i + dddu (s
xc2+ s

2
c
x )
= (s^ + s,c

1
)-^-(d

1
+ 1?

2 ).

From this it follows at once that -M—-f-l=a const.
(Xj+ Ctg

so long as t^+ it
2
= a.

The value of this constant may be found by putting

. sna
it, = and it„ = a. It is = ^~

I + dn

sna

a

T ]

sn(t<
1+ u2 ) _s^+s^

1 + dn(w
1+ w2)

_
c
^i+ ^2

§ 34. Again,
sJ^p = _ * rf

i+ rf
«

= a constant also

sn a

dn a— 1'

Thus
sn( "i + "2 ) = g

1
c2-a2Ci

dn(u
1+ "..) — 1 d

x
— c?2

Inverting these two relations and subtracting, we
have

2 _ '/, + </., d
x
— d

2

sn (u
x+ ^2) S

1
C
2+ 6

2
C
1

8
1
C
2
~~ S

2
C
1

Si/1 2 ^_ o Z/i £ '

1 °2 *2 ^l

2_ o 2
_ °1 6

2
so that Bn(«

1+« 2)
=—

-} ; ,.
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By inverting and adding, we have

s(^i+u2)=
lz

l V \

and dn(u1+ u2) =^4^^2
-

Sjcy4— SgCjCtj

§ 35. In the same way we could prove the following

relations

s
x
d

2+ s.
2
d

x _ sn(u
x+ n.,)

c
i+ c2 ~ca(u

1+u2)+ l'

s
1
d2
—s

2d1
sn(w

1 + ^(.
2)

c
i
— c2 cn(u

x+ u
2
)— 1'

c/?,+ c.,^ _ 011(1^+ u
2)+ dn(w

1+ tt
2)

Sj+ Sa sn^+Ug)

Cj^g— c2dx _ cn(u
1+ u

2)
— dn(u

x+ ^2)

s
x
— s

2 sn(u
1+ u

2)

which we shall leave to the reader to verify.

§ 36. Any one of them is enough to give the value
of cn(Uj+u

2).
Adding the last two we have

/ . S-iC-iCl:-, SgCgCl >

cs(tt
1
+u

g)=
lx * -

g
» 1

,

and li< 'lice cn(»
1+ «

2 )
= -L-Ly ^7 >

by help of the value given in § 34 for sn(u
1+u2).

§ 37. The formulae just found can be expressed in

other ways.

We know that

su(u-\-/K') = T r\su, cn(v + /]{')= —
r dsu,

<\\\(ii +iK')= —1 cs u.
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Put then u^+ iK' for u
1
in the above formulae. We

have

Sn(M
'
+^)

=
/,: Sn(ttl+V+»2)

'^12'^ ** 2 11

cS(«1+ ,7r+ «
2)=(-^+^)/(/4- S22

)'

dn(u
x+ u.

2 )
= i cs^+ iK'+ u

2)

4<«1+«^*+«J-(-j§A+vi-E[)/(B^-V)
The expression on the left is — t&cn^+Ug), so that

cn(u
1
+u2)= \_ k2s \s\

These three forms, in which the denominator is

1 — k28^s2
z

, are those generally quoted. It may be

verified by multiplication that they are the same as

the former set. Thus, in the case of dn^+ w-g),

{d
x
d
2
— A;

2s
1
s
2
c
1
c
2
)(.s

1
c
2
rZ

2
— 8%cxd^)

= s&d^d*+ k\\*) - s&d^d*+k\\2
)

= (hc-A -wMi1 - k\W)>
for d

2
2+^Vc

i
2= 1 ~ 1c\W = d

i +k\\2
.

The other verifications are left to the reader.

§ 38. By putting a
x
+ K for Uj we may form

another set from each of the two we have. The
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four sets of formulae are embodied in the following

Bcheme :

—

Numerator of sn(Kj + n ) :

Numerator of cn(n
1
+ u

2 )

:

CfaSjStfljdz, •Y'i"'-j~ W'l' l-8^—8^+ k28*8^, r
l
<\y/

l
(l.^-k'-S

i
S.
2

.

Numerator of dn(!(
1
+ u.

: ) :

i/
1
i/.

2
-L--s^.

2
r

i
r.
J , s1c2d1

—SjjCidg, c1csd1d%+
k'2

8i82, l-i?s^—i?8^+ k?sfe

Denominator of each :

l-PiyVy, SjC^d^—s^c^, e^g+ v'-'V^i d
1
d2 +Je

i818ic1ci .

§ 39. The above formulae give the an, en, dn of

u
l
— u

2
by simply changing the sign of s

2
.

Thus snK -

u

2) =^'X1^ eta

By combining different formulae we easily find the

following, writing A for 1 — k28
28

2
2

:

—

A sn( u
1+ u,

2 )
sn(u!— u

2)
= s^2— s

2
2

,

-' A cn(n
1+ •w )cn(zt

1
— ?'.,) = 1 — s 2— s

2
2+ k28-^s

2
2
,

. A dnOi + a
2
)dn( u , - u2)

= 1 - /cV- &2
s2

2+k\\2
,

A sn( itx+ H,2
)cn(u

x
— u.

2)
= s

l
c
1
d2+ s

2
c
2
dv

A si i( /'
1
+ i(,

2
)dn(i(

1
— if

2)
= s

1
c
2
d

1+ s
2
c
i<^2>

A cn(tt
x+ it

2
)dn(u

1—

u

2)
= c^c?^— k'

2
sxs2 .

A{1± Eoi(tb
1
+ies

)}{l± sn^—

u

2)} = (c
2
±s

1
<i
2)

2
]

A { 1 ± /• sn( •?t
1 + m-2) } {1 ± k sn( 1^ — i£

2)}
= (d

2
±&s1c2)

2
,

A{dn(u
1+ tt

2)± cn(tt
1
4-^

2)}{ (^n(ui
_w2) ±cn(w i

_u2)}

=(c
1
d

2±c2
d

1)
2

,

A{dn(Uj + u.-,)±k cn(it
x+ u2)}{da(u1

-u2)±k cn(u
1-u2)}

= (d1d2±kc1
c2f,

A{1 ±cn(^+tt2)}{l ±cn(u
1
-w

2)}
= (c1±c2)

2
J

A{1 ±dn(«
1
+ //.

2
)}{l ±dn(u

1-u2
)}=(d1±d2)

2
J

A{1 tcn^/^itj)}!] +cn(u
1
-«

2)}=(.^2 + 'VA)
2
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A { 1 ± dn(u
x+ u2) } { 1 + dn( u -

x
-u.

z)}= k\s
xc2 + s.fj

1
,

^{k'±6n(u
1
+u2

)}{k
,±dn(u

1-u2)}
= (k

,±d
1
d2)

2
,

A
{
//±dn(u

1
+ u

2 ) } {// + dn(w 1
— u

2)}
= — k2{c

xc2±Ksx
s2)

2
,

A { dn( it-j+ u2)
± /t

/sn(i6
1+ u2) } {

dn(u
1
-v

2)±k'sa^-u2)}

= {c.
2
d

1
±//s

1 )
2

,

etc., etc.

The verification of the above results will give the

reader useful practice in the algebraical handling of

the elliptic functions.

§ 40. Since u = v+ a is the integral of the equation

du—clv, a being: the constant of integration, the

different addition-formulae may be considered as

forms of the integral of the same differential equation.

Also if we write x for sn u, y for sn v, the differential

equation becomes

(1 - x 2)~\l - k2x2)~ hdx = (1 - y
2)~\l - k2

y
2)~ldy,

which therefore has an integral that is algebraical in

x and y, although neither side can be integrated by
means of algebraical functions. This fact was known
for a long time before elliptic functions were invented.

Euler succeeded in integrating the equation

X~klx+Y~kly = 0,

where X is a quartic function of x and Y is the same
function of y.

Let X = axi+ bxz+ ex2+ ex +/,

Y= mf+by3+ cy'1+ ey +/.

Then the integration is as follows:

—

Write X', Y for dX/dx and dYjdy.
We have

X— Y= a(xz+x2y+xy2+ys)+b(x2+xy+y2)+c(x+y)+e.

X'+Y'= 4>a(:x
3+ys)+Sb(x2 + y

2)+2c{x + y)+2e.
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Thus

K—Y
——-l(X' + Y')=-a{x + y)(x-yf-lb{x-yY
u,— y

= -(^-yf{<x + y)+hb}.

Also '/ Z*= \ X~*X', '! F* = i F"* Y'.
ax - ay

l| (
, lice

ilx = d
ll = d(x+ y) = d(x-y) = d(X

h-Yh
' Z* -Yi Xh~-Yh X*+Yh %{X'+Y')

( X * - F*)d(s- y)- (x - y)d\X*- F*)

X-F-KZ'+r)(^-2/)

(a; -2/){a(a;+#)+£&} V x-y
Therefore

Z*— F* Z*- F-
{a(a;+y)+ft}d(a>+y) = ^~T^T.o— y a, y

and
V .«-?/ /

=a (x+y)+ b(®+y)+9>

(j being the constant of integration.

This is the integral sought.

Further information, with references, will be found
in Forsyth's Differential Equations, pp. 237-247.

$ 41. Suppose in the addition-formulae that a^ is

real, and u.
2
purely imaginary. Then sv c

1?
dv c

2 , d.
2

are all real, and s
2

is purely imaginary. Thus the

imaginary part of sn^+ ik,) is

This cannot vanish unless s
2
= or oo , or t\ = or

^ = 0.

But d
x
cannot vanish as itj is real, and if c

1
— we

have u
1
= an odd multiple of K.
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Also since u
2

is purely imaginary, if s.>= or x
we have u

2
= a multiple of iK'.

If then a complex argument have a real sn, its real

part must be an odd multiple of K, or its imaginary

part a multiple of tK'.

In the same way if the sn be purely imaginary,

s
1
— or oo, or <?

2
= or d

2
= 0. These are all im-

possible but the first, so that the real part, must be a

multiple of 2K.

§ 42. From this it follows that sn has no other

period than 4>K and 2iK'. For if A were such a

period it must be complex, say A
x+ iA.

2
. Then

an(n,-\-A
1
-\-tA

2)
is real or imaginary according as u is

real or imaginary.

If u is real we have

A
2
= n multiple of K',

for u+ A l
is not generally an odd multiple of K.

If u is imaginary we have

A
1
= a multiple of 27i.

Hence there can be no periods other than those

already found. The same holds for en and dn.

§ 43. Suppose now that there are two arguments

u2
and uz

for which sn, en, and dn are all the same.

Then it follows from the addition-formulae that

sn(u
1+ u

2)
= sn(Uj + m

3),
etc.,

whatever u
x
may be.

Hence u
2
— uz

is a period for sn, en, dn, and must be

a quantity of the form AmK+^ncK'.
Thus all arguments having the same sn as u are

included in the formula

( - 1
)'" u,+ 2iuK+ 2niK'

;
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all having the same en in the formula

± tL+ 4mK+2n(K+iK')
;

and all having the samedn in the formula

±u+2mK+4miK/
.

§ 44. An important property of the elliptic

functions, which has been assumed once or twice in

the foregoing pages (as in §41) is that they are

uniform, that is to say that each of them has one
single definite value for each value of its argument.
Many examples might be given of functions for which

this is not the case ; ar is one.

The property may be proved as follows :

—

Suppose sn u — x, and let us examine the behaviour
of n and x when x is in the neighbourhood of a value a.

Put x — a + ^, and let <t be the value of u when x = a.

Then j|
= {l-(a +^}-{l_(^ + ^)2 }^.

The right hand side of this equation can be ex-

panded in a series of powers of £ which will always
converge absolutely so long as

| £| (the modulus of ^)
does not exceed the least of the quantities

1
1 + a

k k
+a

(See ( 'lnvstal, Algebra, ch. xxvii., §11).

By integrating every term on the right we get
another absolutely convergent series since the term
in i:

'' is multiplied by £/(r+l), a constant (complex)
multiple of a quantity that decreases as r increases.

Hence the value of u is given as the sum of an
absolutely convergent series.

Therefore (see Chrystal, ch. xxx., §18) £ can be
expanded in a convergent series of powers of u—a
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within limits which are not infinitely narrow, and
within those limits £ is defined as a continuous uniform
function of u (Chrystal, ch. xxvi., §§ 18, 19). This
applies to every finite value of a but ±1, ± ljk.

If a has any of these values we may put x = a-\-£'
2

,

and deduce the same conclusion.

Lastly, in order to consider very great values of x
we put x= l/£, and find that 1/x is in that region a

continuous uniform function of u.

Hence in all the plane there is no point where any
branching-off of two or more values of x takes place,

and therefore x is a uniform function of u.

The uniformity of en u and dn u can be proved in

the same way.

EXAMPLES ON CHAPTER III.

1. Verify from the formulae of this chapter that

d
j~ sn(itj+ u.

2)
= cn(^

1+ u2
)dn(u

1+ u2),

cn2(u
1+u2 )+ sn2(w

1+ ?/
2)
= l,

dn'2^ + u
2)+ k2sri2(u

1+ u
2
) = 1

.

2. Find the sn, en, dn of U
r+ U2+us

in terms of

those of uv u
2 , us , and show that the results are

symmetrical.

3. If ?6
1
+ «o+?' 3

= 0, show that

dx
d
2ds

— lc
2
c
x
c.
2
cz = /•'-,

( '\ c»(h~ <\ c '2 ,
':i
~ ''' "'S

2
S3'

C1+^288= C2%
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4. If »
x
+ «.,+ 163+ w4

= 0, show that

c^J
2
'/.j'/

4
— k\c

2
c
3
c
4
+ /•-//-.s

1

N.s
:i

x
t
= //^

•s>

2

So C
3

./,

rf
2

0.I

1

<£ 1

(s^- Sa^^C^ - <(, )+ (>y4
- s

4
r
3
)(r/

1
- rZ

2 )
= 0,

M2~ c
2^i)(s3 - SJ+ (^4 - <Y^)(si

- s
2) = 0,

(*A - sA X c
s
- c4) + ('sv 7

4 - sA)(ci - c
-i)

=

°-

(These relations may be put in many more forms by
such substitutions as u

x
-\-K, u2 , uz

— K, u4
for uv u2 ,

u3 , u,.)

'). If u
l
+ it

2+ u3
= 0, then

0.Cjd^
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&c(u— a)+dc(u+a)
. In w ( In a =—7— —$—. -.—;—

c

nc( it — ft) + nc(u+ a)

,.-, nc( u — a)— nc(u + ft)

~ "dc(u— a)— dc(u+a)'

. sn(w-+a)+ sn(u— a)
sd u en a = ^—7—;

—

N ,

* , rr
dn(u.+ft)+dn(w.— ft)

1 dn(u — a) — dn(u+ a)

~k2 ' sn(u+a)— sn(u — a)'

sn(u+ a)+ sn(u— a)

cn( u -+-<*)+ cn(u— a)

cn(i6— ft)— cn(u+ ft)

sn(i6+ «) — sn(it— ft)'

sd(n+ a)+ sd(-u — a)

nd(u+a)+Jid(u— a)

1 nd(w+ ft)— nd(u— a)
~ k2

'

sd(w+ a)— sd(u —a)'

. sc(u+ft)+ sc(w— ft)

Sll Vf (lc ft = ; ; r— 7 C
nc(it + a ) + nc(u— ft)

nc(ii+ ft)— nc(u— a )

_
sc(i< +ft)— sc(w— a)'

<ls( x+ft) + ds(tt— a)

ns(u+ a)+ ns(u— a)

Qs(u+ft)— ns(u— a)—
« ls( it+ a-) — ds(w — ft)'

ds(c — ft.) + (ls(it+ ft)

sn i* nsa =
;

. —r—

v

cs(u— ft)— CS(W+ ft)

cs(u— a)+ cs(u+ ft)

" ds(u— ft)— ds(tt+ ft)'

sc M <ln </ =

sn xi cd a =

dii 1/, nd " =
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. sd(u+a)+sd(u— a)
SC U 11(1 (t =-j7 (-

Y7 r

c(\{n -\-a)-\-cd(u —a)

1 cd(u+a)— cd(u— a)

k'
2 sd(w+a)— sd(u — «)'

dc(u + a)

+

dc(u— a)
in u as a = —

sc( " +a)— sc(u — a)

7/2 sc(it+ a)+sc(u— a)
' dc(U+ «) — dc(u — «)'

ns( it — a ) — ns(tt -f «)
en it nc a =—7

—

—

£

cs(it— a)— ch(h +<t)

cs( " — ")+ cs(u+(*)

ns( a — a)+ ns(u+ a)



CHAPTER IV.

MULTIPLICATION AND DIVISION OF THE
ARGUMENT.

§45. By putting u
1
=u2 in the addition-formulae

we easily find the values of sn2a, cn2u, dn2it in

terms of snt*, cnw., dnu. Writing S, 0, D, s, c, d for

these quantities respectively, we have

S=2scd/(l-k2s%
C= (c

2 - s\l2
)/( 1 - fc

2s4) = ( 1 - 2* 1+ A;V )/(l - fcV),

D = (d2 - kW)/( 1 -&V) = ( 1 -2W+ Jch4
)/( 1 - kh ' ).

§ 46. Moreover, these equations can be solved for

6', c, d if S, C, D are supposed known.

We have D-G= 2/o'V/(l - fcV),

D-W=

A

/2(l +£V)/(1 -/.V),

2) _ W+j/a = 2/,-'^/( 1 - /cV),

x>_ ^a-A/2 = 2»v/(i - /,v).

o D-lczC-Jc'2 D-C
Thus

k\D-C) ~D-k*C+h'2

:-——=., by subtraction.

, 9/ , ,
7= , l»v subtracting again.
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Hence we find the following formulae for In:—
/l-cniA 2 l/l-dnuX*

s,l *"
=

ll +dnJ
=
Al+cnu)

(1 — en u) (1— <bi u) 2

en ., a =

/,' sil U

< In u + en uX2
k'/ 1 — dn u

1 + dn iv J k Vdn u— en u

( 1 — dn u)*(dn u+ en u)

1c sn it

1 1

(dn it+ en uy(l —en it)'
2

sn h

, ,
/dn it+ cnuN-5

,,/ 1-cnw V
\ 1+ en u / \dnu — cnu/

§ 47. In particular

sn|Z=(l+//p,

en pr=&'*(l + &')"*,

dn £#=&'*,

snUK' = i/<
rK

being purely imaginary and of the same sign as its

argument

;

en UK' = k~ h(l + /•)",

being a positive quantity
;

dnhK' = (l+k) h
,

being also positive.

These three may also be deduced from the others

by using the complementary modulus.
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Also

2 k 2

=< i -')Q
2

These three are most conveniently found from the

former six by the addition-formulae.

MULTIPLICATION OF THE ARGUMENT BY ANY
INTEGER.

§ 48. By repeated use of the addition-formulae we
can find the elliptic functions of 3u, 4a,..., in terms
of those of u.

We may prove the following facts about the form-
ulae for sn nu, en n a, dn nu :

—
Firstly, when n is odd,

sn nu= sn u X a rational fractional function of siru,

cnwu=cnttxa rational fractional function of sn-a,

drinu=dnux a rational fractional function of sn2
w.

In each case the denominator is the same function,

and is of the degree n%— I in sn u : the numerators
are different, but are of the same degree, n2— 1.

Secondly, when u is even,

sn 7iu= snucnitdn u xa rational fractional function

of sn2
it,

en mi = a rational fractional function of sn-//,

dn nu= & rational fractional function of siru.
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In each ease the denominator is the same, and its

degree ia n2 in snit; this is also the degree of the

numerators of cnrm and dnnu; the numerator of

sii rcu-5-sn u cnudnu is of the degree a 2— 4.

Clearly we may say a rational function of cn2u or

dn2 u instead of sn2 u without altering the meaning
or the degree to be assigned.

§ 49. These statements are evidently true when
n = 1 or 2. Suppose them to be true for the values

m and m+ 1 of n; one of these values will be even,

and the other odd.

Write Sp , Cp , Dp , Xp for the three numerators and
denominators of K\\pu, en jm, dnpu respectively, and
s, c, d for sn u, en u, dn u. Then

= scd x a rational integral even function of 8 of

degree 4<m2— 4,

= a rational integral even function of s of

degree 4m2
,

n =D2
is

2 -m2 c2

2m m m mm
= a rational integral even function of s of

degree 4m2
,

N9 =N* -/••'N t

2m m m

= a rational integral even function of S of

degree 4m2
.

Also

,S
j/,f . I

= SmJ\ m.C'm+ll-'m +i-\rSin |
l-A^n

|

\( m'Kn

— a, rational integral odd function of s of degree

2m2+2(m + l)2 -l, that is, (2m4-l)2
;

'

^2m+l = ' in^ in'm + 1" m + 1
— ^vMin^m+l'hn + 1

= a similar function of c
;
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= a similar function of d :

= a rational integral oven function of s of

degree (2m+l)2 -l.

Hence, if the theorems hold for the values m, m+1,
they hold also for 2m and 2m+ l. Now they hold
for 1 and 2, and therefore for 2 and 3, 4 and 5, and
universally.

§ 50. Also these expressions will be in their lowest

terms. Consider for instance Gm , a rational integral

function of c of degree m2
. This must vanish when-

ever en mu= 0, that is, whenever

mu =K+ 2pK+ 2qiK',

l>
and q being any integers.

Hence the roots of Cm= as an equation for c are

,. , K+2pK+2qiK' . .

the values of en — — . Inis expression nasm L

ut' different values found by making

j) = 0, 1 ... ra— 1,

and g= 0, ±1 ... ±|(m— 1) or ±lm,

in turn. Thus the degree of the numerator of en mu
cannot possibly be lower than m2 and the expression

we have found for en mu is in its lowest terms.

Also as CJ+ S2
m=^,

and Gm, Nm have qo common factor, Sm and J)w can

have no factor in common with either.

$ 51. We may notice that when N,„ is expressed in

terms of s, the coefficient of s2 in it vanishes.
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For N =Ni -k2Si

\f _ W2 7\T2 _ Z.2£2 S'J

Now 8 is a factor in N„, and Sm+1 , so that if the term

in s2 is wanting in NIH and iVm+ i it will be wanting in

N2m and iVom+1 .

Now iA
r

x
= l, N

2
= 1 — //V, from which by induction

the theorem follows.

By changing w, into u + iK' we find that the co-

efficient of sm~~ 2 vanishes in 8m when m is odd and in

X,,, when m is even.

DIVISION OF THE ARGUMENT BY ANY INTEGER,

§ 52. If we know the value of sn u, the multiplica-

tion-formula gives us an equation to find snu/n.

When n is odd,

sn is the root of an equation of the degree n2
,

71 whose coefficients are rational in sn u.

When n is even,

sn2 is the root of a similar equation.
n

We may show that the solution of these equations

depends only on that of equations of the nth degree.

$ 53. Take the case when n is odd.

Since snu= sn.(u+ 4?pK+2qtK'), it follows that

sn (u+4<pK+2qiK') is also a root, and as this ex-

pression has n2 values it includes all the roots. Call

it >.(/>, q).

Then clearly any symmetrical function of \(p, 0),

\(p, 1), ... , A(/>, n — 1) will be unchanged by adding
any multiple of '2/K' to u. Such a function then will

have only n values, given by putting p = 0, 1, ...,n—\
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in turn. It will therefore be a root of an equation of

the nth degree only.

Thus A(j>, q) is the root of an equation of the nth
degree whose coefficients are also given by equations
of the nth degree, rational in sn u.

The same form of argument holds in the case when
n is even, and also in the case when en u or dn xi is

the function given and we have to find the sn, en, or

dn of u/n.

EXAMPLES ON CHAPTER IV.

1. Find the values of the sn, en, and dn of

h(mK+ mK') for all integral values of m and n.

2. Prove that sn \K is a root of the equation

l-2x+2k2a?-k2a?= 0.

What are the other roots, and which is the real one?

Ans. m(%K±%iK'), m(3K+%iK'). The last is real.

3. With the notation of this chapter, show that

AT2m+i ± C^2m+ij expressed in terms of c, has 1 ±c for a

factor, the other factor being a perfect square.

4. Show that Nim—C-im has 1— c
2 for a factor, and

that the other factor of it is a perfect square, as is

also N2m+C2ni .

5. Prove that when expressed in terms of d,

^V^Hi±A>m+i has 1 ± d for a factor, the other factor

being a perfect square, that N-> ltl
— D»m lias 1 — d2 for a

factor, and that the other factor, as also N-2M+ ^2m> is

,i perfect square.

(i. Show that iV2m ±$2»! can be expressed as a perfect

square, as can also the quotient Ox iV&n+i ± $2m+i by
J ± ( - 1

)
m

8.

7. Prove similar facts with regard to Nm ±kSm ,

k'Nm±Bmi Dm ±Cm) Dm±kCm .
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8. Prove that

(cNm - Gm f -T- (Nm + ,
- G.m + x)(Nm _ x- Cm _ i),

( (LVW-Dm)
2- (

A

r

„ t + , - DM + 0( JJT, _ , -DM _ o
are independent of the argument u.

9. If ,u, i' are any two nth roots of unity, show that

the //tli power of

2 sV^sn i(«+4piT+2griZ/

)

p=0 g=0 /fr

is a rational function of sn u and en u dn it.

Hence show that the value of sn %/>?, may be

found by the extraction of nth roots, if sd.2K/ti and
sn 2iK'/n are supposed known.

10. Use the last example to find expressions for

sn \a, sn §u.

11. When // is odd, prove that

n sn ?ui ==SS raitt+ w
j» = /U =

and that 7i
2sn2?m=

J>J Zj sn UH

—

~)
v = ^ = 7b /

1 2. When ?i is even, prove that

2uK+2vtK'
//-us



CHAPTER V.

INTEGRATION.

§ 54. We must now examine how far it is possible

to integrate, with respect to u, any rational algebraic

function of sn u, en u, dn u, or, as we shall write

them, s, c, d.

(b(s c d)
In the first place, suppose the function to be -j-~ -

. >

and yfr being rational integral algebraic functions.

We may make the denominator rational in s by
multiplying it and the numerator by

\Js(s, —c, d)\}s(s, c, —d)\f/(s, —c, —d),

and by means of the relations

c'
2 = l-s2

, d2 =l-//-V-:

by means of the same relations we may reduce the

numerator to the form

Xi(s)+ CX2(S)+ ^Xs(s)+ cdXi(s)>

the denominator being x(s) an(l X> Xv X->> X3> X4' a^

rational integral algebraic functions.

*55. Now [°*^du-\*P>d8,
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which can be integrated by the ordinary rules for

rational fractions

;

J x(«) W s)
'

and this can be reduced to the integral of a rational

function by the substitution

2z
s =

I+02 '

1— z2

which gives ( 1 — s
2
)
5 =

2
-

Also [^duJz^a-kwytds,
J x(s) -W)

which can be reduced by putting

The problem is thus reduced to the integration

of Xi(s)/x(®>

§ 56. The first step will naturally be the expression

of Xi( ,s
')/x(

,s') as a sei*ies °f partial fractions.

When this has been done the expressions to be

integrated will fall under one of the two forms

8
m

,
(s-a)-m

,

a being any constant, real or imaginary. We will

consider these in turn.

Let U'"</u = ?V Now

= (m - 3)sm -W2- 8m - hi1 - /•V" "
2
c-

= (m - l)k2sm - (m - 2)( 1 + k?)sm
~ 2+(m- S)sm - \
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and therefore, integrating, we have

G+sm- Bcd

= (ra - 1 )A:"
2
vm - (m - 2)(1+ /'-

)> im _ o+ (m - %)vm _ 4

where (7 is a constant.

Thus when m > 3, vm can be expressed by means of

vm -2 and y'm _4; and in the case when ra= 3, v
3
can be

expressed by means of vv
Thus when m is odd the integration of yOT depends

only on that of vv and when m is even on that of v
2

and %
$57. Now v

x
= \sD.udu

= 2 1 sn 2x (foe, putting 2x = u,

4 sn x en a? dn oj 7
,

1 — /c
2sn4sc

1, l+te
—

7 lOff ! 7

/,'
&

1 — 7c0

1 . 1 +/• sn2Aw

Thus the integral of an odd power of sn u can always
be expressed by means of the functions sn, en. dn, log.

$58. Again, v =\</a = u,

n-J.8D?udu.

It is not possible to express V2 by means of known
functions, and a new symbol has to be introduced.
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Eu = dn2u du,

The letter E is generally used, and the definition of

its meaning is

r
so that v2= (u— Eu)/k2

.

The value of ii
7u when u=K is generally denoted

by i? simply, so that

C
K

E= I dn2uc£w.

o

The Greek letter Z was used by Jacobi for a slightly

different function, denned as follows :

—

Zil = Eu-uE/K.
Thus ZK= 0.

One advantage in the use of this notation is that

there is not the same risk of confusing the product
Eu with the function Eu.

§59. We now turn to Us— a)' wda, which we shall

call wm . Put s — u — t.

'! (s-a)- m+1cd
du

= (-m+ l)(s- a)~ mc2d2 -(s-a)- m+1s(d2+ k2c2)

= ^»'[(-m4-l)-(-m+l)(l+/:2
)(^+ a)2

+(-m+ l)k2(t+aY-t(t+a){l+k2-2k2(t+a)2
}]

= -(m-lXl-a2)(l-k2a2
)t-m

+(2m- 3){ 1 + A:
2 - 2&2a2}a*

- m+1

+(m - 2){1 +A:2- 6/rV}^-"i+2

-(2m-5) . 2&2a . t-m+3-(m-d) . k2 . t- m+i .

Integrating, we find that wm can be expressed by
means of known functions, and wm -i, Wm ~2> ^m-s,

D. E. p. D
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f,,,
i ,

provided always that (m— V)( 1 — a2
)( 1 — h2a2)

does not vanish.

If a2 = l or I///2 , then tu)U -i can be expressed in

terms of u,

TO _ 2 , wTO_ 3j wm_4 for 2m — 3 does not vanish.

Hence for these special values of a the integral can
be reduced to w , w. v iy_

2 , that is to v , vv v
2 , and no

new function need be introduced.

But in general the reduction can only be carried on
as far as u\ , since when m = 1 the coefficient of wm in

the formula of reduction vanishes. We must introduce

a new function to express ivv and w
% , wz

... can be
expressed by means of this and known functions.

§60. Now though Us— a)~ xdu and (s+ a)
_1du

cannot be found in terms of known functions, their

sum can.

For by the addition-theorem

, v , / s 2 snucnadn a
sn(it + a)+ sn(u— a) = - - -^—s *—

I — A'-sn-a situ

Now each of the terms on the left can be integrated

since we have found I sni(c£u. Hence if a be so chosen

that /csna= l/a
3
we have an expression for

2s
ldu.j-g idu or l(tf — a)

1du+ l(s+a) 1
c

The new function that is introduced is therefore

only needed to express

[{^-(^-hla-Us+ uyhlu,

and the one actually chosen is

f"-//
2sn acnadna sn2w.

1 — /o'
2sn2

w, sn2a
(hi.
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This is denoted by IL(u, a), and u is called tlie argu-

ment, a the parameter.
It has been shown then that any rational function

of sn u, en u, dn u can be integrated by help of the

new functions E and II. The properties of these will

be considered in the next chapter.

EXAMPLES ON CHAPTER V.

1. Prove that k2
\ sn 2udu=\ ns2udu — k'.

K K
2 2

2. Prove that /v - -— = - —\-k
2u— Eu.

J 1 — sn 16 1 — sn u

3. Find [- f ,

\**
t
i

<IU
, \^

J 1 + k sn u J k + dn u J 1 + en u J 1 — dn u

1 „ & en u dn u 1 „ 7c'it sn u en u
/ -

A.-
- 1 + k sn u k-k k 1 k (k + dn u)

sn u dnu
,

,-, 1 , „ N sn u en u
l+cnu k2K J 1— dnifc

4. Show that

f
M sna ena dnadu „. . , , sn(a+ u)—o— —

o

= II(u, a) - \ log ; (.

J sn%— sira ° sn(ct— u)

5. Prove that

I ns u du= log sn \u — log en \u— log dn |u,

I cs it du = log sn Ju+ log en \u— log dn \u

,

I ds u du = log sn hu — log en \ u + log dn ^u.
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(i. Verify the formulae

f" sn a en a dn a dn2u du „. .
,

, , cn( z^— a)
^?— —2—r^— = II(u,,a)+£log

—

) {,

o

tu k2sn a en. a dn. a en2u du „, ,
,
,, dn(u-a)

J dn2w—

&

2sn2acn2w v ' / ' 2 to
t|n^t ^_ a )

7. Prove that

Il(/^,/a<, l//>) = Il<>, a,k),

tt/ 7/s rr/ \,ii cn(tt— a) snadna
II(tu,ta,/c) = II(u, a)+ £log—)

(—u—
" & en( <t+ a) en «

the modulus on the right being k throughout.



CHAPTER VI.

ADDITION OF AEGUMENTS FOE THE
FUNCTIONS E, II.

vj 61. Expressions can be found for E(u
x
-\-ti

2 )
and

H(u1+u2 , a) in terms of functions of u
x
and u

2
.

As in the former case, suppose u
1 -\-u2= b, a constant.

Take the function Eu^ + Eu.,.

^{Eih +E^ = d*-di

= - Wm{u
x
+ m 2)(s1c2^2

- s^j

)

= /,'
2sn/>. , (s,s9).

Cfrlfci
i z

Thus Eu-
l
+ Eu 2

— l-
2
s
1
s
2
snb is constant, and putting

u
1
= b, u

2
= 0, we find its value to be £"6.

Hence

J
£'«

1+ .fi^— ^(uj+u2)
= k2sn w^m i<

2
sn(it

1+ v.,).

It follows that

2iii
x
+ Zu

2
— Z(w

x+ u
2)
= //

2sn « rsn it
2
sn(Uj + ?'.,)..

§ 62. Putting u
2
= /^ we have

E(u+ 7v')

-

Eu =E- /,;-sn w sn(u+ K)
= E—Jeisn a cd ".
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E(u+ 2K)- E(u + K) = E-khn(u+K)m(u+ 2K)
= E-\- /u

2sn \i cd u.

E(w+ 2K)-Eit= 2E.

Hence E(u+ 2mK) - Eu = 2mE.
Z(u + 2mK) = Zu.

$ 63. Let us apply Jacobi's Imaginary Transforma-
tion (i; 21) to Eu.
We have

pit Ml

E(lu, k')= i\ dn2(iu, k')du= 1 1 dc?(u,k)du.

I)

^T d sn udnu , „ 7 „ ,
sn2w dn%

JNow 7
— = dn£u— k~sn-u+ ~

du en u cn-u
= dc2W— 7>:

2sn2u.

tt „, 7/ , snwdnu _
Hence ^(m, k) = i— —

h

iw— < Eu,
v 7 en u

the modulus when not expressed being k; no constant
is added for both sides vanish with u.

Thus as en K = 0, E(iK, //) and therefore also

E(iK\ k) are infinite. Let us find the value of

E(K+iK',k).

E( K+v) = Eu+E- //
2sn v sn(u + K)

= Eu -\-E— Z:
2sn u cd u.

Thus

iE(K+ u)+ E(iu, ]/) = i(u+ E) + t min(dcn-k~cdu)

= ( (^t+ A)H -.

en u dn 76

Put now (A" for it, and write

E' for #(Z', //).

Then tE(K+t K')-E = iE- K',

E(K+ l K') = E+,(K'-E).
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§ 64. Since

E(K+ u) = Eu+E- k2an u sm>+ K)
we have

E(K+mK) = E(mK)+E=E(mK-K)+ 2E=....

Thus E(mK) =mE if m is any whole number. Also

#0+ 2mK)- Eu = E(2mK) = 2mE.

In the same way

Em{K+iK') = mE{K+iK') = mE+im(K'- E').

E{ u+2mK+ 2miK')-Ev. = 2mE+ 2mi(K'-E').

Thus

E( u+ 2mK+ 2 ,nK') = Eu+ 2mE+ 2iu{K' - E).

This equation shows that the effect on the function

Eu of adding any multiple of 2K or 2iK' to its argu-

ment is to add the same multiple of 2E or 2i{K'— E')

to the function.

§ 65. The quantities K, K' , E, E' are connected by
an important equation which we shall now prove.

Clearly

K{E(K+iK')-E) = [

K

([
k+
dn2iiduXh\

A'

*A , (-K+iK'

K'.E=\ f\ dtfvdvAdv,

A'

Thus
-A" rK+/K'

K.E{K+<K')-(K+,K')E=
[ [

{dnhi-dn2v)dudv.

A

The right-hand side may be transformed by putting

sn u sn v= x, dn u dn v = y.
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We have

d(x, y)_ en u dn u sn v, — k2sn u en u dn v

d(u, v) en v dn v sn u, — fc
2sn v en w dn it

= — &2cn u en v{&t\2v dn2
it — sn2 » dn2

??)

= en u en r(dn\> — dn2u).

The subject of integration is then —

.

d ° cnu en v

Now fc
2cn% cn2<u - if- = Z-

2Z;%2 - // 2
,

so that the transformed integral is

/.: dy dx

II;

As to the limits, snv takes all real values from
to 1, and snu all real values from 1 to 1/A:.

Thus, if x has an assigned value >1, snit and huv
are nearest when

sn u= x, sn v = 1

,

and furthest apart when

sn u= 1 fk, snv= /&».

The value of y will therefore range from

k'(l-P£2

)
h to 0.

For if = 1 + &4#2- 2&2a - /,:
2(sn u - sn v)2

,

which is least when snu and snv are furthest apart,

and greatest when they are nearest.

Also, if x has an assigned value <1, sn?/ and sni>

are nearest when

snu=l, snv=x,

and furthest apart when

sn u= 1/k, sn v= kx.
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The value of y will therefore range from

k'(l-Wf to still.

The integral is therefore

n
1

*'(i-a--v')* kdydx ,, , . itt
2

i

, that is, - .

v ' ; '

Any doubt there may be as to the sign of this result

is removed by the consideration that in the original

double integral

dn v > k' > dn v
,

so that the subject of integration is always negative,

while du is positive and dv has the sign +<.

Hence K . E(K+iK')-{K+iK')E= -W.
Substituting the value that was found above for

E(K+ iK'), we have

EK'+ E'K-KK'=},tt.

§ 66. The following result will be useful after-

wards:

—

*K
Eudu = i(KE-log J/).

.1

o

We may prove it thus

f Eudu=i E(K-u)du=},[ {Eu+E(K-u)}di

/.JE

= 1 1 {E-\- /.;
2sn u sn K h\\(K— u)}du

o

= ^£+if^" ttCn "
<fa

-J iliiw

= IKE- 1 logdn K=l(KE-\oglS).
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ADDITION OF ARGUMENTS FOR THE FUNCTION II.

§ 67. Again if u
x+ u2

= b,

^-{IL(uv a)+II(w2 , a)}

_ A;
2sn a en a dn as

x

2 &2sn a en a dn as
2
2

1 — k'\2sri2a 1 — fc
2s2

2sn2a

/c
2sn a en a dn a^2— .s

2
2
)

~
(1 -k\hn2a)(l -k\Wa)'

Now we have seen that

Sl
2-8

2
2=-sn&A(SiS2).

What we have to do is therefore to express s
t

2
-|-e

2
2

in terms of SjS2 and fr. Now

(l-F^V^cn&dnfc

= (\c
%
d

x
d
z{

1 +k\2s
2
2
)— s^k-c-^c^2+ d^rf.r).

= 2s
1
s
2
c
1
c
2
cZ

1
J

2+ s^c^d.?+ s.fc
2d 2

.

So that

(1 -/.-W^Kl + &Vs2
2
)sn2&

- 2Sis2cn 6 dn 6}

= (l+Fs
1
2s

2
2
)(s

1V^22
+*2

2
Ci

2^1
2)+2a

1V(^iV+^22
)

which reduces to (1— 1^8^8^)\8^-\-8^).

Hence s
x
2+ s

2
2 = ( 1 + fc

2s
1
2s

2
2)sn26 — 2s

1
s
2
cn 6 dn />, and

^ (iiKa)+n(tt2
,i()}

/.

,2sn «, en a dn « sn 6
= ~

1 - fc
2sn2

tt {
( 1+^8,V)sn2

6- 2s
1
s
2
cn 6dn b }+&4s

1Vsn*
t*

du
x

'
-
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The denominator

= (1 - k2sn2a sn-6)+ 2&2s182 . sn2a en b dn b

+ k^s^s.fsnhi^nhi— sn2
6)

= ( 1 - &2sn2a sn26) { 1 +k\s
2
sn a sn(a+ 6)

}

{ 1 +k\s2
$n a sn(« — b)}.

The numerator

= hr( 1 — &2sn2a sn2
6)/,:

2sn a { sn(a+ />) — sn(a — b) }

.

Hence

~"^n^i' a
)+n(u2> «)}

_ 1 k2sn a sn(a+ b) d , .

2 1+ /,;
2s

x
s
2
sn « sn(a+ 6) afa^

r 2

1 &2sn a sn(a — b) d , .

i L ( S S )

2 1+ ^SjSgSn a sn(a— b) du^ v

_ 1 d , 1 +^s^sn a sn(a+ 6)

2 <iu
1

® 1 + /v
2
s
x
s
2
sn a sn(a — 6)'

Integrating then, we have

Il^+itg, a)— 11(14, a) — IL(u
2 , a)

_ j , 1 + Z:
2sn u

x
sn u

2
sn a sn(u

x+u2+ a)
2 to

1 — /v
2sn i6

x
sn u

2
sn a sn( 14+u2

— a)'

$ 68. There is another interesting property of the

function II which we shall now prove. It connects
II(u, a) with H(a, u), the same function with argu-
ment and parameter interchanged. We have

_ d _. . 2/„-
2sn a en a dn a sn2u

2 y-II(ii, a) = =

—

m—

5

odu 1 — Arsn2a sn2u

= £2sn a sn ?t { sn(u+ a)+ sn(u — a) }

.
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Thus

„ 32

LT(u, a)

sn it =

duda

= &2sn u {sn(u+ a)cn a dii a+ sna cn(u+ a)dn(it+ a)

}

+ />:
2snu { sn(u - a)cn a dn a- sna cn(u- a)dn(it- a) }

.

But by the addition-theorem

sn2(w+ a) — sn 2«

sn(w+ a)cn a dn a+ sn a cn(u+ a)dn(u+ a)

sn2(u— a)— sn2a

sn(u— a)cn a dn a— sn a cn(u— a)dn(u— a)'

for m = (u+ a) — a — (u— a)+ a.

Hence

2^-II(m , a) = 7c
2sn2(u+ a)+ &2sn2(u - a)- 2khnza

= 2 dn2a — dn2(u— a) — dn2(u+ a).

In the same way

2 -^—LT(a, w) = 2 dn2u - dn2(a - u)- dn2(a+ ^),

so that ^——{JUu, a) — Tl(a, u)} = dn2a— dn%,

^-{LT(u, a)— H(a, it)} =u dn2a— i?w
3

for n(0, «) = n(a, 0) = 0.

Finally then U(u, a) — II(«, u) = u . Ea— a . Ev.

This may also be written uZa— aZll.

EXAMPLES ON CHAPTER VI.

1 . Prove that E(u+K)- En =E+S log dn u.
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2. Prove that

E(u+K+iK')-Eu=E(K+iK')+ f logcnu.

3. Prove that

E{u+ iK') - Eu = E(K+tK') - E+ f log sn u.

i. Prove that kE(ku, ljk)= E(u, k) — k'
2u.

5. Prove that

kE(iku, ik'/k)= iu— iE(u, k)+ik2sn(u, k)cd(u, k).

6. Find the values of EhK, EUK', Eh(K+iK').

Ans. %{E+l-k'), %t(K'-E'+l+k),

l(E+iK'-iE'+k+ d').

7. Show that

U(K,a) = KZa,
U(K+iK\ a) = (K+t K')Za+ 1 ira\'lK.

8. Prove the formula

2ll(u, a)=2uEa- P "evcIv.

9. Verify that

2IL(u, %K)= u(l-k')+\og&n(u+$K)-%logl<f.

10. Prove that the limit when a is indefinitely

diminished of Il(u, a)-i-a is u — Eu.

11. Show that Enu — nEu is equal to a rational

fractional function of sn u multiplied by en u dn u.

By partial fractions or otherwise show that

nEnu— n-Eu= - , - log N„

,

where X„ denotes the common denominator in the
expressions for sn nil, ennu, danu.
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12. In the same way prove the formula (n being odd)

2
I
ulK + 2viK'\

^=0 v = lb /

= -n(n-l)(E+iK'-tE').

13. Prove the formula for addition of parameters in

the function II, namely,

IL(u, a+b)-IL(u, a)-IL(u, b)

_ j , 1 + /»;
2sn a sn b sn u sn(u+ a+ b)

2 ® 1 + &2sn a sn b sn u sn(u— a— b)

— k2u sn a sn b sn(a+ 6).

14. Find the value of —II(u. a) and prove that

II(u, u) = wi£u— 1 1 Ev dv.

o

15. Prove, by putting u+v= Zr, u — v = 2t, and
integrating, that

II(u, a)+U(v, a)-U(u+v, a)

{ 1 - fc%n2(r- a)sn2
* } { 1 - &2sn2

( r+a )sn2r

}

= h log
{ 1 - &2sn2(r

+

a)saH
} { 1 - fc

2sn2(r- a)snV
}

'



CHAPTER VII.

WEIERSTRA.SS' NOTATION.

$ 69. For sonic purposes it is convenient to use the
notation of Weierstrass, which we shall now explain

shortly.

We write fu for a2ns2ait+ /3, where a is any con-

stant and /3 is a constant which we shall determine.

Differentiating, we have

p'u = — 2a3ns au cs au ds au.

Also cs2au = ns2au — 1

,

ds2au= ns2au— k2
.

Thus (f'uf = ±(fu - (3)(pu -/3- «2)(£m-$- u'k2
).

Now choose /3 so that the coefficient of p
%u on the

right may vanish. Then

and (p'u)2 = 4p*u- g2
<pu - gs ,

where

g2 = _ 4/3< ,6+ a2
) - 4008+ a2/r) - 4(0+ u-)(/3 + a2

/.'
2
),

//:5
= 4i8(/3+ as

)(/3+ a^).

The equation

{f'uf = 4p3u - g2pu - gs
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with the particular equation

Limv, :=o(u
2pu)= l

constitutes the definition of Weierstrass' function pw.

§ 70. Conversely, if <pu = x,

u=\\^xi-g2
x-g

zyh-dx.

X

The periods of the function pu are 2K/a, 2iK'\a.

They are denoted by 2o>, 2o/ respectively, and their

sum by 2a/'. We then have

fcto = /3+ a2 =ev say,

<poo" = (3+ a2k2 = e
2 , say,

P« =j9 =e3, say;

and e1; e
2 , e

3
are the roots of the equation

4x3 -g
2
x-g

3
=

in descending order of magnitude.

Thus p
,

w= ^'
Cl)

/= p
/

a," = ().

§ 71. We may write #>(tt, g2 , gs )
for £<u<. when we

wish to specify the quantities g2 , gz.

Thus if we put /xa for a in the original definitions

pu is changed into fj?p^u, ami g2, //,, are changed into

,*.% and M
G
,73

.

Hence p(u, g.,, g&)= ^(fxU, ^-%, /*-%).
In particular

P(lU>92>9a)=-P(u>92> ~9s)-

Also by a second differentiation we have

2$>'u$>"u = 1 2p2up'u — grfp'u,
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$ 72. The addition-formula for pu is easily found
from the formula

m(v
x+v2)=

8

\Z
&

s cd
'

's
l
( 2"'2 6

2
c
l
a

l

F( >r ns"2( v +v) = (8 i
c2^2- 8

2
cA)2

J- w lift V ^iT ^2/ /„ 2 £. 2\2 '

\°1 <s
2 /

(D-D) M^+ ,,
«)

1 "2

_ /
' 2 " 2'2 2_ (

'l -1

V

SrS2
2

S
1

2
8.,/

^2_ CAV 4- ( \ }l\ /

^C
2
2
^2

2
_ C\Al

This, translated into Weierstrass' notation, as ex-

plained in §09, gives, if we take v
l
= a.u, v2

= aV, and
remember that 1 +/i;'

2 = - 3/3/a
2

,

r . \ i ,

\(p'u — p'v\2

p(u+ ?
' ) + o it+ ay = -

1 (-
-— ,

the formula sought.

Again,

9_ p'u-p'v _ _ p'2ii-p'up'u jyphi - J,//,

du pu— pv (pu— pv)2 pu— pv

_ 1 /p'u- p'v\* 1 p"2u- p'2v 6p2u- !,</.,

2\pu—pvJ 2 (pu— pv)2 pu-pv

Now p'hi— p'2v = 4>(p
3u— p

sv)—

g

2(pu — pv),

so that it^^ =2(29U+pv) y^-9:^\
ou pu— pv 2\pu — pvJ

i , \ 19 p'u-p'v
and p(u+v)=pu- =— i

-

2 3w, #m — pv
]>. E. K.
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§ 73. Instead of the function E or Z, Weierstrass

uses £u, defined by the equation

^=l+\Xl-^}''

Differentiating, we find

The term - is put outside the sign of integration
u

. . . . . , 1
because fU is infinite at the lower limit, but $u— —?,

is finite.

The value of g(u+ v) is found as follows :

—

f\u+ v)- £'u= - p(u+ v)+ pit

_1 3 tfu— y'v
~ 2 'du <pu — <pv

'

XT C/ X £ SI 1 P'U—G>'V
Hence £(u+ *>)- fy- <?= * >

where is a quantity independent of u.

Also fit = 0, when u= 0: and for the same value

2 1 . .

of u, fau-\—5= 0, and ©u— , is finite.
u3

it
2

Ihus ~- + is zero when u= and
2 pu — <pv u

C=£v.

Hence Hu+v)-?u-tv= \
£*=&.

The definition of £ shows that since p is an even

function, £ is an odd function. Thus

and if U-\-V+W= 0,
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wo have tu+tv+ tw = -
5

* J—

1 <p'v — <p'w_ 1 <@'w—q'u

2 pi; — pw 2 py — gait

= -(ptt+jw+pw)4
.

The theory of these functions will be found de-

veloped in Halphen's TraiU des Fonctions Elliptiques

- / '/< leurs Applications (Gauthier-Villars).

EXAMPLES ON CHAPTER VII.

1. Prove that

{
<p{u+ »)- pco] {$p u - #><»} = (fto - p«)(P» - P»")-

2. If «.+ t>+ n' = 0, show that quantities a and 6

may be found such that

tfv =apv +b,

<^'w= a<piu-\-b.

3. In the last question prove that

a=-2(£u+£v+£w).
4. If the equation 4<x

3— g2
x— gs

— has only one
real root, prove that one corresponding value of k is

a complex quantity whose modulus is unity, and that

in this case k'
2snuk~'2

is real if u is real.

5. Show that

4&2u = <pu + p( a+ w) + p( <t +- a)') + p( a + co").

6. Prove the formulae

(1) {pu+ p(u + w) }
{y(u+ a)') + p(u + ft)") }

= — 4^0)^)2 ^— 4pa)'^ft)".

(2) pj to - pu + {fu - e
2)
h(pu - e

3
)*

+ (F»- «»)*(*«* - %)* + (p» - ei)*(jM* - *)*.
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7. Writing ;;, >/, ;/' for fa, fa', fa", prove the formulae

(1) >;+ >/ = ,;",

(2) f(w+2wiw + 2mV) = £u + 2m

,

}+ 2mV,
if 7?i and m' are integers

;

(3) t]W — }]'(*) =ht7T,

(4) r
+

} D dv=(u-w'),i+ r ^rfi-+nog t,i_p '6

J J C
l
~" C3

= (u + hw)n+ 1 log(pi6- e
x)

-ilog(«i-c2) (^i-eg),

(5) 2£ 2 it = £11+ f(u,+ w) + f(«+ ») + £(
« - «").

8. Show that

J par-ffw J px-fm

9. If a and 6 have the same meaning as in Ex. 2,

show that

d , ©'a;— a©aj— 6 p'u #>'t; p'if
. log 8 ,— '

, , = H - h—5 +«•



CHAPTER VIII.

DEGENERATION OF THE ELLIPTIC FUNCTIONS.

§ 74. For certain values of the modulus the elliptic

functions degenerate into trigonometrical or expo-
nential functions.

Thus let k = 0, then tin u = 1 always, and

d
-^— sn u = en u.
du

where cn2u+snhb= l,

and sn = 0, en = 1

.

Therefore sn u is sin u and en u is cos u (§ 6),

Eu= u, K=E=lir, Zu= 0.

§ 75. The six related moduli in this case are equal

in pairs, the three values being 0, 1, x .

If k= l, then dn u = en u, and we have

d
. sn u = en'

2 a = 1 - 811%, sn = 0.
du

Put sn u = tanh 6 and we have

rift

sech2
0-P = 1 - tanh2 = sech20.
du

Thus 6 = u, as they vanish together.
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Hence sn(w, 1 ) = tanh u,

cn(u, 1 ) = dn(u, 1 ) = sech u,

E(u, 1)= dn2(u, l)du=8B.(u, l)= tanh u.

o

K is the least positive value of u for which sech u = 0,

that is K= oo
,

E= m\K=\.
Z(u, l) = tanh u*

§ 76. For the case when k — x we have

sn(u, k) = j sn( ha, i) = t sin few,
A' \ hi It

cn(u, fc) = dn ( leu, ,-
)
= 1

,

dn(w, h)= cnyha, j-)=cosku.

These formulae show the behaviour of mu, cnu,
dn u when u is a quantity comparable with 1/k.

The table of periods for the related moduli (§ 27)

shows that in this case both the periods are infinite,

their ratio being —1.

$ 77. When /• = (), the real quarter-period is finite,

its value being hir) the imaginary period is infinite.

When h=\, the imaginary quarter-period is finite

and equal to \iri\ the real period is infinite.

It may be shown that in this case the limit of

Zi'-^logA;' is finite, and in fact = — 1.

*The notation sgw, cgw for 8n(«, 1), cn(w, 1) is sometimes used,
in honour of Gudermann. As however the functions have names
already, being the hyperbolic tangent and secant, we have not used
the others.

The function arcsin tanh u is generally called the Gudermannian
of a and written gd u. (Sec Chrystal's Algebra, chap, xxix.,

§31, note.)
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For wo proved that

\(EK-\ogV)=fEudu.
o

Thus h(EK- 2/v- log k') = {\eu - 1 )du.

o

Also j£(w, 1)— l=tanhu—

1

= _2c- 2w/(l+e- 2
''),

so that [{#(u, 1)- 1 } du = log( 1

+

e

~

2u
) = - log 2

,

between the limits and oo . Hence

Lim k
- =1(K/\og k') = Lim te ~

f^ -^log k'=—l,

as E=\ in the limit.

EXAMPLES ON CHAPTER VIII.

1. When k vanishes, prove that

LT<>, a+iK)= ucota+% log
gi

'

+ 6

2. Show that

LT( ?t, « , 1)= | log cosh(u — ct)sech(it+ a)+ it tanh ct.

3. Prove that the degeneration of $<m takes place

when
f/2

3 = 27(/3
2

.

4. Show that gd(< gd u) = i it.

5. By the substitution

b cot — a tan = (a+ 6)cot 0,
prove that

r(a2sin2 + b2coHW hdO =
[
(a^sin^ +W2coH26Y h

<10,

o o

where 2ct1
= a+6, b

l
= a'

i b-, and ct, &, «
:

,
frj are all

positive.
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6. If in the last question a.,, b
2
are formed from av b

x

as these from a, b, and if this process is carried on,

show that in the limit, when n is increased indefinitely,

7T

an = bn= ^j
j"Vcos2 + 62sin 2

0)
_i

( 16.

(This quantity is Gauss' Arithmetico-Geometric Mean
between a and b.)



CHAPTER IX.

DIFFERENTIATION WITH RESPECT TO THE
MODULUS.

§ 78. The elliptic functions depend on two variables,

the argument and the modulus. We must now show
how to differentiate them with respect to the modulus.

Write 8, c, d for sau, cnu, dnu, and let <r, y, S denote

3 d d ,

^snu
' mcnu

> mdnu -

Since then -y—= cd,
du

we have ,
- = y(Z -f- c<5.

du '

Since c2+ s2 = d2+ &2s2 = 1

,

we have cy + s<x = , cW+ /vS
2 + &2

*'cr = 0.

Eliminating y and o,

CC^+ S(t(^2+^ +^ = °"

Now ^cd=-s(d*+k*c*),

so that -j—(

°"

7 ) + '

to = 0.
du\cd/ <f-
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Again ^S= C2- S2+T ==C2"W/^

dfa- ksc\_ kc2_ k'2-d2

s
dvXcd k'

2d)~ k'
2 ~ W* '

, ar _ ksc u Eu
anc ^d~Wd+Tc~W*'

each side vanishing when u — 0. Hence

d sn 16 />; „ . u , #?<- ,

——j— = y7r,sn u en- it+ 7
en u an it—

7 ,
,.,cn u an it,

ore Ic
-

/e reA;

3 en n h u , iwt ,——j— = —
, A)sn-!t en u — y-sn ?t dn u + , , ,

sn u an u,
ore A;

- k kk -

d dn u k q , 7 ,
fc TT— ^sirM. dn it — /«t sn u en ?( + , ,.,tu sn -m en u.

dk ^2™ n,-,».»W -
, J/r

dk§ 79. From the last we may further find ^Ev , as

follows :—

-

d2Eu d , , 2k „ 79 „, , ,2L 7—-y =-r dn3w = — T7o$ d* — zAttt . sea + -,-,.,Aw . sea.
SitoA; d/c /<;

-

k -

Now r scd = c2d2- shP -&W
ati

=k'2s2+c2d2 -2s2d2
,

'! (Eu.s2
) = 2Eu.scd+s2d2

,

-=r-U . s2 = 2w . scd+ s2.

du

TT 32Aw (Z (res
2

, , ,
/>;sccZ)

Hence —

—

f
—_-- —Eu-ks2

. u+ ,,.,

dudk (Lu{k 2 k l
)

= - ^-M2+ks2- !U,k'
2
*
2+ chl2) = -~d2

.

k - k

"

re
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Integrating,

En = — '', crihiEii — ku sn2u+~ sn u en u dn it,

3& //- k 1

since again both sides vanish with it.

$ 80. These equations enable us also to find

dK (IE

dk ' dk'

We have cn(K, k) = 0, and therefore

— sn K dn K . --, ,— ; sn K dnK+ Tl ,.-> sn K dn 7v" =
(//,• K Aw 2

i !•«• r r ti
r?/r £-/ /2if

by dinerentiating. thus 37r=—7^72—

•

Again, when u = K, -^Eii= —kK.

Thus
d^=-kK+dn^K~
ok dk

lir E-k'2K E-K
= -kk +

Also

so that

k k
'

dK' _ Ej-m? dE'_W- K'
.

~dU~ m ' dk'~ 1/ '

dK' mC-E' dE' k(K'-E'

dk "
fcfc'

2
' dk k'

2

§ 81. Again

dkk2
dk)

=
dk<
E-¥K)

E-K E-k'*K-jr—k .—3^ +^A

/•A'.
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Putting kr = c, k'2= c in this we have it in the form

d( ,<IK\ xlr

which is unchanged if c and c' are interchanged. It

must therefore also hold when K is put for K , as can
easily be verified.

The most general solution of the equation

is accordingly y = AK+ BK',

where A and B are any constants.

§ 82. In the same way

d(jdE\_dE (JK_E-K E-k'*K_ IcE

dk\dk)~dk dk~ k kk'2 ~ k*2
'

This equation is not satisfied by E' also, but we saw
(§ 63) that

E(K+ iK') = E+i(K - E),

so that K'—E' is suggested as a second solution.

at d /rr/ pa E'
Now -rr(K — & )= — -r-

dk k

Hence the most general solution of the equation

is z = CE+D{K'-E'),

C and D being any constants.
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$ 83. The differential equations just found for K
and E may be solved in scries, and thus the expansions
of K, K', E, E' in powers of /.: may be found.

Take &{<*-*$}-*

and put
?/=2^* +2r

'

r =

for the exponents of k in successive terms must clearly

differ by 2. Then

|{(^)§}-%-W^
+ 2{(s+2r)Vr-(s+2r-2)(s+2r)

/
ar_1-Mr_ 1 }A;*+

2'- 1
.

The coefficients are therefore given successively by
/s _|_2r— l\ a

the relation fxr=i— —- -

J
/ur - 1, and the values of s

by the equation s2 = 0. This equation has equal roots,

so that we find the second solution by differentiating

the first, namely

u . v (s+D2(g+3)2 ...(8+2r-l)2

£i («+ 2)
2(s+ 4)

2
. . . (s+ 2r)2 ~ * '

with respect to s before putting in the value of s.

Hence, if

,l
=i+a)v+(^)v+ ... +{i^-i)}v+ ...,

^/1.3...(2/'-l)\ 2

and
2/2= 2/i

logfc+ 22i\ 2.4... 2r J

X
V 2

+
3 4

+ '" 2r/ '

the complete primitive is
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§ 84. We may therefore choose A and B so that

this expression shall be the value of K or A".

Now we have seen that when k—
} K=\tt. But

y l
= l, y2

= x for this value of k. Thus

*-i-*-f{i +QWG> + ...}.

Suppose that K' = A y1+ By.
2

.

§ 85. In the same way, from the equation for E we
may find series for E and K' — E', or we may use the

formulae
E=k'2K+kW2dK/dk,

K' _ E' = l-K'+ kk'WK'jdh

Putting
1
= (l-/,^

1
+ /l&),

we find E= hirzv

K'-E = A Zl + Bz2 ,

where

~ -i _ ! /2_ r2 - 3 /.4_ l2.32...(2r-3)2(2r-l)
"

l 2 2 22.42 "" 22.42 ...(2r)2
'"'

Hence E' = A(,
/l -z l )+ B{y

2
- z

2) ;

and as when /,=0,

/,;' = 1, //i--i = °> and //.-.;,= -!,

we have B = — 1.
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$ 86. A, as well as B, may be found as follows:

—

We found (§66) that, the limit of \{EK- 2K- log k'),

win mi k= l, was — log 2.

Thus in the limit, when /,' = 0,

{A(i} 1
-z

l
)+JJi !

j,-:,)}{Ay
l
+B jJJ

-2^+ %,) -log A:+ 2 log 2 = 0.

The coefficient of log A; on the left is —B2 — 2B—].
This must vanish, so that, as we found before,

Ji=-1.

The a 1 .solute term is - AB - 2A + 1 log 2. This must
vanish, so that

A = 2 log 2.

Hence K' = 2^/dog 2 — y2 ,

E'= 2(y1
-z

1
)\og2-(y2-z2 ).

It is noticeable that the series yv z
x
are hyper-

geometric. Thus, in the notation of hypergeometric

series,

EXAMPLES ON CHAPTER IX

1. Prove that K increases with k so long as the

latter is a positive proper fraction, while E decreases

as /,• increases.

2. Show that

^Evdv=-
2/viEuf^ J

Eu-
Tc+ Ĵ̂ ,

and hence find ,ll(u, a).
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3. Prove that it' Nn is the common denominator of

sn uu, cnnu, dnnu, and is equal to unity when u = 0,

then

die dui du

+ n%ri2- 1)NnkWu = 0.

4. Writing x for snu, transform this differential

equation into the following, in which x and k are the

independent variables :

—

7)N ?>2N2^/^^+(l-^)(1 _/,V)^
?)N

+x^{(2n2-l)k2(l-x2)-l+k2x2}+n2(n2-l)Nnk2x2 =().

(For Examples 3 and 4 use the result of Ex. 11,

Chap. VI.)

5. Show that
¥

= P'u(t922u~f&M - 99sV2u +WPU+ §9?9v

= ®'u$9du - I !hu ) + Vxj-tf
1a- $9$ «-- 9i-

6. Prove also that

W-*9i)^
= ~ 9<l0iu~ %9du) + i 0z9 u+ tg»£u ~ ¥J-/J^

and that
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7. Show, by differentiating the equation

or otherwise, that

'dco

8. Prove also that

(gi-^g^ = 1^3 -3^
2

.

(g*- 27#3
2

)^;
= Iwi - io>g-2g3 ,

ogz

9. Verify by differentiating that EK'+ E'K-KK'
and tjco'— tj'o) are constants.

10. Interpret the following differential equation,

satisfied by <pu :

—

11. Verify the values of yr and -jt when one of

the related moduli k', 1/k, 1/k', tk/k', ik'/k is sub-

stituted for Jc.

12. Deduce the expansions of K and E in powers of

h by means of the equations

7T J

13. From the equations of Ex. 12 find the values

.. (IK , dE
or -sy and -rj-

<//, a/c



CHAPTER X.

APPLICATIONS.

§ 87. The usefulness of the Elliptic Functions con-

sists chiefly in this, that by means of them two surds

of the form (a + 2fix + yx2)^ can be rationalized at

once. One such surd could be made rational by

an algebraical substitution: thus (1 — x2)'2 becomes

(l-2/ 2)/(l + 2/
2
) if 2y/(l+f) is put for x, and (1+ ®2)*

becomes (l+y2)/(l — y
2
) if 2y/(l—y 2

) is put for x
;

but generally speaking no rational algebraical or

trigonometrical substitution will rationalize two such

surds.

§ 88. Let the two surds be s'~ and cr'
2 where

s = a+ 2bx + ex2 , cr = a + 2/3x+ yx2
,

We shall suppose the coefficients in s and cr to be real.

Also let S = A + 2Bx+ Cx2

where A, B, G are found from the equations

Ac-2Bb + Ca = 0, Ay-2Bp+Ca= 0,

so that in fact S=
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Let £, 7] be the two roots of the equation S—0.
Then it is known that s and <x can both be expressed

as sums of multiples of squares of x— £, x— rj, and in

fact it is easily verified, since

a+b(i+r])+ c&= 0,

a+£(£+*)+ yft= 0,

that 8(g- v) = (cg+ &)(»-,)«-( 6r,+ b)(x-£f,

and (r^- n) = (y^+^(x-nf-(yr,+^(x-i)^
Also by tracing the rectangular hyperbolas

<x>+h{£+r{)+ c&= 0,

<*+£(£+ *)+y&= 0,

each of which has the line ^=>; for an axis, it is at

once seen that the values of £ and r\ which they furnish

are real except when the line g=r] is the transverse
axis in each, and each hyperbola has one vertex lying

between those of the other. This is the case in which
s = and <x = have both real roots, arranged so that

one root of each falls between those of the other.

We see also that in the identity

S{£- l) = (c£+ b)(x - rjf - (cr,+ b){x - g)\

the product of the coefficients of the squares on the
right is -{c2

£7+ 6c(£+ *i)+ b2
}, that is ac-b2

.

Hence s is expressed as the sum of two squares if

s—0 has imaginary roots, as their difference if s =
has real roots. The same holds for cr.

If then £ and »; are real we may by the real rational

substitution y = (x— ri)/(x— £), express s
2 and cr in

terms of y and two surds (± 1 ±K 1

;f
2
f, (±1 ±/ur>j 2

f-

§89. Such a surd as ( — 1— k
2
;/')

2 will be imaginary
for all real values of y. The other cases we shall

take in turn.
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I. To rationalize (1-jcY)*> (1-/*2,?M (Take *>/*.)

Put icy = sn( it,

then (l-/c2 //7 = cnw, (1 — /x
2
y

2

)

2 = dnii.

ii. (i-«y)* (1+mV)*.

Put /c v = en | u, -—j [

then (1 - KhfT = sn u, (1+ ^if)
h = -(^ 2 + K

2)K\n u.

III. (1+icV)* (1+AV)* (Take *>/*.)

Put «ry= SC1U
3

-,

then (1 + /c
2y2)" = nc u, (1 +mV)* = dc u -

IV. (^V-l)4
, (1-/*V)* Here * nmst>/x

}
or

both surds cannot be real.

Put ^y =djiL,
y~

if)

Y

then (I-aiY)*"-^-^8)*™^,
K

fX

v. (^ 2-D4
, (1+mV)*-

Put f * 1
^V = nc ",

, |

,

then (/cY-l)*= scw, ( 1 + /ry- )* = (/cH/r)'^' ".
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VI. (/cy- 1)*, (MV2 - 1)* (Take k > fi.)

Put /j.y= na\u, —

then (f2
V
2 — 1)'"= dsu, (uV- 1) = cs%.

/*

In each case the value of as is given in terms of u
by substituting for y in

«=(y£-9)/(y-i).

It hardly need be said that if £ were infinite, we
should put y = x — i], and then we could go on as

before.

§90. If £;
= >/, the process fails. But in that case

s and <t have a common factor a;— £.

Let s= (a;— £)(ccc

+

d), <j = (a;— £){yx+ cJ).

cx-\-d ., Sy2—d

Thus s(c - yiff = (8y*- d - £c + £yy*)(c8- dy)y\

<r(o ~ yy'1)
1 = (<ty

2~d- go+ gyy
2)(c8- dy),

so that s and cr'
2 can be expressed by means of a

single surd of the form {A+By^y. This surd can

again be rationalized by putting

~B _ 2m
A 1+m 1

Put ?=2/
2

5
x~

V\l±^ =

Hence if £=*}, the surds can be rationalized by an
algebraical substitution.

§ 91. The above does not apply to the case when

8= c(x— d)(x— e), <j = y(x — o)(x— e),

d, 8, e, o being real quantities in order of magnitude.
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In this case put

x — d _ „ _ ()//'- — d
jr^s-y >

x = 2/2-1-

Then s= c(S-d)y2 {(S-e)y2 -(d-e)]^(y2 -lf,
<r = y(S-d) {(8- €)y*-(d-e)}+(y2 -I)2

.

Thus s
2 and cr are expressed by means of two surds

only, and those of the form (Ay2+Bp, which we have
already shown how to rationalize.

§ 92. It is easy to verify, and important to notice,

that in each case -j— is a constant multiple of s-cr-.

§ 93. An expression of the form

axi+ fix*+ yx
2+ Sx+ e (= X, say)

can always be expressed as the product of two real

quadratic factors by the solution of a cubic equation.

Hence any expression which is rational in x and X-
can be rationalized by a substitution such as we have
just discussed.

The exceptional case of § 91 need not arise. It will

not be possible unless the roots of X = Q are all real.

In that case there will be three ways of resolving X
into real quadratic factors, and only one of the three
will lead to the exceptional ease.

If a = 0, X becomes a cubic instead of a quartic
;

but by a linear substitution for x of the form

Ky+ \

the expression is made rational in y and Y- where

r=xo*//+^4
,

bo tliat K is a quartic in y having /uy + v for one of
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its linear factors. Thus there is no real distinction

between the cases of the cubic and the quartic.

$ 94. It must not be supposed that the rationaliz-

ing of these surds can only be accomplished by the

particular substitutions which we have used. The
number of substitutions that might be used is un-

limited. We have tried to choose the simplest. The
comparison of the different substitutions that would
rationalize the same surd or pair of surds belongs to

the theory of Transformations, which is beyond our

limits.

APPLICATION IN THE INTEGRAL CALCULUS.

$ 95. When an expression has to be integrated which
contains two surds, each the square root of a quadratic,

or one surd which is the square root of a quartic,

linear functions being counted as quadratic and cubic

functions as quartic, then it follows from what we
have proved that the integral can be expressed by
means of the functions sn, en, dn, E, II.

For the subject of integration can be made a rational

function of sn u, en a, dn u by a properly chosen sub-

stitution, and such a function can be integrated as

explained in Chapter IV.

GEOMETRICAL APPLICATIONS.

$96. The elliptic functions have an important use

in the theory of curves, plane and twisted. This

depends on the following theorem:

—

Tin- coordinates of any point on a curve whose

deficiency is 1 can be expressed rationally by means
of elliptic functions of a single parameter. (Compare
Salmon, Higher Plane Curves, §§44, 366.)

Suppose the equation to the curve to be U=Q, and
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that it has multiple points of orders, l\, h
2 ...

}
its

degree being m. Then the deficiency is

|(m _l)(m_ 2)-2p(£-l),
and we have 2 hk(k — 1 ) = hm(m— 3).

Take a system of curves of the degree on — 2, each

having a point of order /«•— 1, where U = has one of

older k, and passing also through m— 2 other fixed

points on the curve.

The number of arbitrary coefficients in the equation

to such a curve is ^(m+l)(m— 2), and the number of

conditions assigned is £ %k(k— l)+m— 2, that is

h(m+ 1)(m — 2)— 1 . Hence there will be one arbitrary

coefficient left, and as all the equations to be satisfied

by the coefficients were linear the equation to any
curve of the system is S+\T— 0, A. being the arbitrary

coefficient and S, T determinate functions of the co-

ordinates of the degree m— 2, such that $ = 0, T=0
are two curves of the system.

Of the m(m — 2) intersections of the curves U=0,
S+ \T= 0, 2 MJc- 1 )

+

m- 2, that is m2- 2m- 2, are

fixed. Thus only two depend on X. Call these P
and Q.

Let A be one of the m — 2 fixed intersections of

S+\T= with £/"=(). Replace J. by any other point

^i
x
taken at random on the curve. Then we have

another system of curves S
1 + \

1
T

1
= 0, whose inter-

sections with U=0 are all fixed but two. Choose X
x

so that P may be one of these and let Q l
be the other.

Q x
will not be the same as Q. For a curve of the

degree m — 2, satisfying all the conditions above

j
)i-( 'scribed for >S'+ A T = except that of passi i tg thn tug]

i

A, and also passing through both P and (
4
>, will lie

altogether fixed, and all its intersections with U =
have been already specified but one. This one is A,
and therefore it cannot be A v Hence Q 1

and Q are

different.
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The three equations Z7=0, S+\T= 0, ,S'
1 + A

1
7

1

1
=

will therefore enable us to express the two coordinates

of P rat 'mini!/// in terms of A, Xv and also to eliminate

those coordinates and find the relation between A
and Xr
When X is given, there are two possible values for

X 1(
found by substituting in —SJT1

the coordinates of

P and Q respectively. In the same way when A, is

given there are two possible values for X. The
equation connecting them must then be of the second

degree in each, and may be written

X1
\AX 2+ BX + C) + X

1
(DX2+EX +F)+GX2+ HX + J=0.

This equation may be solved for Xv the only irrational

element being the square root of a quartic in A. Hence
this is the only irrational element in the expression of

the coordinates of P in terms of X, and it may be

removed by a substitution for X in terms of elliptic

functions.

Thus the theorem is proved.

§ 97. If the curve is not plane, but twisted, we may
suppose S-\-XT— 0, S

l
-{-X

J
T

1
= to represent not curves

but cones, of a degree lower by 2 than that of the

curve. Take 17 = to be a cone with any vertex

standing upon the curve and S+ XT=0 a cone with
the same vertex, and having as a (k— l)plu edge any
multiple edge of order k on U= () and also having
iit — 'l fixed edges in common with U = Q.

S
1
-\-X l

T
1
= may then be a cone drawn in the same

way with another vertex and we may ensure that Qt

is not the same as Q as follows :

—

Let the positions of P and Q when A. = be F and G.

Through F and another point // draw a cone with the

vertex that is proposed for *S
1 + A

1
jT

1
= and satisfying

those of the conditions that f>
l
+ X\l\ = Q must satisfy

which are not at our disposal. Take the other m — 'l
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simple intersections of this cone with the curve as

defining the fixed edges of the system S
1+ \

1
T

1
= 0.

Then as G is not the same as H, Qx
cannot in general

be the same as Q.

The rest of the argument goes on as before, the two
equations to the curve taking the place of the single

equation £7=0.

The deficiency of a twisted curve is thus understood
to mean that of its projection from an arbitrary point

upon an arbitrary plane. In general the double points

of the projection will not all be the projections of

double points of the curve, but some at least will be
the intersections with the plane of chords of the curve
drawui from the vertex of projection.

§ 98. The simplest examples of curves of the kind
in question are non-singular plane cubics, and among
twisted curves the quartics which are the intersections

of pairs of conicoids, and in particular sphero-conics.

If A is the parameter of § 96, and a the elliptic

argument, then it follows from § 92 that the coordinates

are expressed rationally in terms of A and .—, which

we may call A', and A'
2 is a rational quartic in A. To

each value of A there correspond two values of u and
two points on the curve the two corresponding values

of A' being equal with opposite signs.

$ 99. It may be proved that if a variable curve of

any assigned degree meet the curve in points whose
arguments are uv u

2 , ... , u n , then

u
1
+ n

2
-\- ... + ",i = a constant.

For let </>! = 0, 2
= be any two curves of the

degree assigned. Then we can prove that for the

intersections of the given curve with tf>l+ fjnp2
= 0,

2?t is independent of fx.
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In <p 1
and

2
substitute the values of the coordinates

in terms of u, and let fv /2 be the results of sub-

stitution.

Then u is given by the equation

and
7
= —Jo-s-i^+M-H

Now /j and /2 are rational functions of X and X',

so that ./^-M/x+ m/^) i ,s a ŝo a rational function of

them, say i/^(X, X')-r-x(^> ^)- Its denominator may
be rationalized by writing it

v,(x,x')x(x, -v)-x(A,xm -n
Thus since X'

2 is rational in X we may write

f2 A+BX

A , B, C being rational functions of X.

Let \, X 2 , ..., X„ be the roots of the equation GY =0,
corresponding to the values uv u.

z ,
... , un .

Then A/G and B/G may be resolved into partial

fractions, there being an absolute term in the first

case because A and G are of the same degree.

Hence we have an identity of the form

Now of the two points for which X = X,-, only one is

generally to be taken, suppose that for which X' = X/.

The left-hand side is therefore finite at the point for

which X = X,. and \'= — X/.

Making this substitution after multiplication by
X — X,., we Qjidpr—

q

r\r
/= 0.

Thus J* .» ft+s4^+V).
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If, however, the point (A,., — A/) is one of the inter-

sections we must have A^A,-, A/= — A/ corresponding
to us , another of the series uv u.

2 , ..., u n . Then the

equation (7=0 has only one root corresponding to

the two arguments, and there is only one fraction

(pr+2rA')/(A-Ar) for both.

But in this case the equation pr— q7\r'= Q does not

hold, and we write

Pr+qX_ q*K'+Vr A'+ A/ g r\s'+p,- A'+ Ag'

A-Ar

=

2A/ ' A-A, 2A4/ ' A-A*'

so that the final form is the same.

The identity

being thus proved to exist, we may find the value

of qr in the usual way, by multiplying by A — A,- and
putting u= ur .

Thus gr .2A/=XimM=M/^
X~y
h + W-i

= value of /.,A -M 7
' + />H ~

>
17 - Vaw cm

when wr is put for u,

= —Xr'dUrjdlX.

That is, q , = — -?> cZ u ,./* //*

.

Now give u such a value that A becomes infinite.

Then A' is infinite of a higher order; but as /j and /2

arc of the same degree,

/

2
-5-{fi+fify is Unite. Thus

2^=0,

and 2,dwr/dfi= 0,

so that 2% is independent of ,u.
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Giving /j. the two values and oo
, we find that

1\',. is the saiiic for the two curves
X
= O and r/>.

2
= 0.

But these were taken to be any curves of the assigned

degree. Hence the theorem is proved.

It will clearly hold also if the given curve is not
plane and

<f> 1
= M,

2
= are any surfaces of the same

( 1 1 sgree.

$ 100. The facts proved in §§ 96-8 may be applied

to integration. If y is a function of x, and the

relation connecting them is the equation to a curve
of deficiency 1, then any rational function of x and y
may be expressed rationally by means of the functions

sn, en, dn of a single variable, and may be integrated

with respect to x or y by means of these functions

together with E and II.

§ 101. Take, for instance, (1— a?
3
) dx.

Put y = (l-x3
)
h

,

so that x3+ y
3 = l.

This is a cubic without singularity, so that the de-

ficiency is 1.

Put x + y = z*
Then z3— dxyz= 1

,

22 1

^=3 "31

(x-y )2=3z-w
The radical is therefore (4<z— z4

)
2

.

The real quadratic factors of z*— 4>z are

z(z-2i
) and z2+2}0+2*.

* Here z takes the place of the X of § 96, and the curves S=0, T=0
are respectively the straight line x + y = [)am\ the line at infinity, the
point of intersection of these two being clearly a point on the curve.
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The roots of the equation

2s- 2*, -2*3 =0

2s+ 2*, 2*s+ 2*

are 2"*( - 1 ± ^/3).

Hence we put

that is, =-{/(x/3 + l)+ (v/3-l)}-2^-l).
Then

(^-l)%(2-2S
) = 2V'3(2 + x/3){^-(2- x/3)

2
}.

(* _ 1)2(3.2+ 2% + 2*) = 2*. 3(<
2 +l).

We therefore take

*=(2-V3)cn(», *g^>
using the substitution II of § 89, since the radical

is (4s— s4)^, not (s4 — 4s) .

Then

^= 2-i
(JS/3-l)(l+cnu)-{l-(2- x/3)cnu}

= 2f(l+cnu)-r-{(V3+ l)-(>v/3-l)cnu} }

(t - 1)M«- 2*) = - 2V3(2-^sA,
(f - l)'

2(s2+ 2*s+ 2*) = 2*
. 3(2 - x/ :3> 111

''"'

Tims (t.-l)*z*(x-y)* = 2h*( l2- s/S)WH dn2w,

a- 7/ = 2*3*(2 - ^3 )sn u dn it

^-2- i(V3-l)(l+cnu){l-(2- x/3)cntt}.
i

= 2*3*sn it on w

- (1 +cnu){(lJ3+ 1)_ (^/3- l)cin(}.

Also ./!+ ?/ = 2S(] + cn h) -r- {(N/3 + 1 ) - (^73- 1 )cn u }.
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From these equations x and y can be found at once.

Now if v be written for 1(1 — x3
) dx, we have, since

x3+ y
3 = 1

,

fh,- dx - dV _ d(x+ y)
(-10 ., a g o •

y- — ar y
A— ar

But^(.« + 7/)=-2Ssnndn^{(x/3 + l) + (v/3-l)}

-{(v/3 + l)-(v/^-l)cnu} 2

= -Zh-\x-y){x+y),

so that v = 2~ 5
. 3* . u+ const.,

that is to say,

f_^^
2
-
¥cn _ 1y3 + i){.+ (i-^}-2;

+const
J(l-a;3)^

(s/S-l)[x+(l-x3f} + 2i

the modulus being
(x/3-l)/2x/2.

§ 102. It should be noticed that when a is a con-

stant, the equation connecting snit and sn(u+ a) is of

the same doubly quadratic form as the one found
between A, X

:
in § 96.

For the two values of sn(u+ «) when sn w is given
are sn(u+a) and sn(2/T—u+a). Their sum is

2 sn u en a dn a -5- (1 — &2sn2w sn2a),

and their product is

(sn2™ - sn2
«) -j- (1 - //

2sn-u sn2
«).

Ib'iice sn2(u+a){l — &2sn2M sn2a}

— 2sn(u+a)sn it en a dn a+sn^u.— sn2a= 0,

that is, /,--sn-« sn2w.sn2(tt+ a) — sn2(w+a) — sn2!*

+ 2sn(u+a)snucna dn a+sn2a= 0.
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The same holds for any other of the elliptic functions
sn, en, cln, sc, etc.

This suggests another way of integrating Euler's
equation (§ 40) which was given by Cauchy.

Let (j>(x, y) =0 be an equation of the second degree
both in x and y, and let

<f>(x, y)=X y*+2Xiy+X2

= Y x2 + 2Y
l
x+Y

2
.

Then ||= 2(FoaJ + F1) >

^ = 2(X
o2/+X1 ).

But since <p(x, y) = we have

(7^+ Y
1)

2=Y
1
*-Y Y

2
= Y, say,

and (X y+ X,) 2 = X*-X X
2
= X, say.

Hence <j)(x, y) = is an integral of the equation

X~*dx-\- Y~'~dy = 0, and X and Y are quartics in x
and y respectively.

Also if in <p(x, y) the coefficients of x2y and xy2 are

equal, as also those of x2 and
^/

2
, and those of x and y,

then $(#, 2/) will be symmetrical in x and y, and X
will be the same function of x that Y is of ?/. Also

the number of coefficients in (p is still one more than
the number in X or Y so that if the coefficients of X
and Y are known, $ = will contain one and only one
arbitrary constant, and will be the complete primitive.

§ 103. If in a doubly quadratic equation connecting

x and y we transform x or y or both by substitutions

of the form x = (e£+f)/(g£+h), the transformed equa^

tion is still of the same form in the new variables,

though with different coefficients.

Now there are three arbitrary constants in such

a transformation, and they may be so chosen as
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to make the transformed equation symmetrical, since

symmetry is ensured if six coefficients are equal in

pairs, namely those of x2
y, x2

, x to those of xy2
, y

2
, y

respectively.*

When the expression has been made symmetrical, x
and y can be rationalized by a substitution for either

in terms of elliptic functions, the two substitutions

being of the same form and having the same modulus
but different arguments. It follows however from the

differentia] form of the equation that if u and v are

the two arguments,

du= ±dv, u ±v = a constant.

Hence transformations x = —^—4, y=— 7 can be
gg+h' J

cri+d
found such that £ and >/ are the same function (sn, en,

dn, sc, etc.), with the same modulus, of arguments
differing by a constant.

*With the notation of § 102, it may be proved that the anhar-
monic ratio of the roots of X = is always the same as that of the
roots of Y = 0.

For, by putting xy = z, <p(x, y) may be made a quadratic function
of x, y and z, so that the two equations xy - z = 0, <p = represent a
twisted quartic curve. The cone standing on this curve whose
vertex is any point of it will be a cubic cone and the anharmonic
ratio of the four tangent planes to it drawn through any one of its

edges is a constant. (Salmon, Higher Plane Curves, §167.) Thus
if A, B, C, D are any four points on the curve the four tangent
planes through A B have the same anharmonic ratio as those through
BC, and these have the same as those through CD.
Now let AB, CD be the lines at infinity in the planes x = 0, y =

respectively, these being chords of the curve xy = z, </> = 0. The
equations X =0, Y = represent the two systems of tangent planes
and the theorem follows. Another proof is given by Salmon {Higher
Plum Cum*, §270).

It follows that by a linear transformation of x the roots of X =
can be made the same as those of T= 0. This is the transformation
wanted, for it may be verified that <p is symmetrical if the coefficients

in X are proportional to those in Y. In carrying out this verification
it is advisable to suppose X and Y reduced to their canonical form,
in which the second and fourth terms are wanting. (See Salmon,
Higher Algebra, §203.)

D. E. F G
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§ 104. This applies to any case in which two para-

meters are connected by an algebraical relation, such

that to each value of either there correspond two
values of the other. There are two or three important

cases of this which we shall now discuss.

In the first place, let P, Q be two points on a conic,

such that the line joining them touches another fixed

conic. If P is given there are two possible positions

of Q, one on each of the tangents from P to the other

conic. The relation between P and Q is reciprocal, and
the coordinates of each may be expressed rationally

in terms of a single parameter. Hence the parameters

of the two points are connected by a doubly quadratic

equation of the form we have been considering.

The same may be proved if the tangents at P and

Q are to meet on another fixed conic, or if P and Q are

to be conjugate points with respect to another fixed

conic. It is in fact known that these three conditions

are only the same stated in different ways.

§ 105. Jacobi has given a full discussion of the case

when the two conies are circles, into which they can

always be projected.

Take any four points A, a, (5, B (Fig. 2), in order on

a straight line, and on AB, a/3 as diameters describe

circles. Let the centres be Ct, 0, the radii R, r, and

let on = S.

Let P, Q be two points on the outer circle, such that

PQ touches the inner circle at T. Let P'T'Q' be a

consecutive position of PTQ, meeting it in U.

Also write

6 = BAP, <j> = BAQ, 6+ d6 = BAP', <j> + J<p = BAQ'.

Then BilP = W,
PQP'= 2d6,

PP'= 2R(W,

Qg=2Rd<p.
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The angle

and the angle

Tims

and in the limit

lint

PUP' = QUQ',

P'PQ = QQ'P'.

PP'_QQ'
PU~UQ"
(16 _ d<j>

PT~TQ
PT*=OP%-OT*

= R2+ o
i +'2R<> cos 20 -/•'',

TQi = tf
2+ o

2+ 2 7?<5 cos 2 - r2
.

Fig. 2.

If then we write

&2= 4R($/{(./2+<5)2-r2
},

sin = sn(u, /.'),

sin </) = sn(>, /•),

\\f have cos 6= en u,

cos = en v,

PT={(R+syt-7&
}
hdnu,

TQ={(R+ 6f-r*}K\nr.
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Also cos 6 dO= en u dn u du,

dO = dn u da.

Thus du= dv,

v— u= a, a constant.

§106. If now we put £= tan0, ^ = tan0, the co-

ordinates of P and Q can be expressed rationally in

terms of £ and r\ respectively, and we can find the

algebraical relation between £ and >/ that follows from

the equation v — u = a.

Take QB as axis of x, and a perpendicular to it

from Q as axis of y. Then the equation to PQ is

x cos( + </>)+ ?/ sin(0+0) = E cos(0- </>).

The perpendicular drawn to it from is r. Hence

R cos( - <p) + <$ cos(0+ <j>)= r,

that is, Jsl+ (5+ ( i?- <5)£; = r sec sec 0,

(R+ £)
2+ 2( A'

2- <5
2
)£,+(£- <S)

2£V= r\ 1 +f )( 1 + >/
2
).

Putting r/(R+ S)= cn(a, /,),

the value of cos when is 0, we find

(R-8)/(R+8)= dn(a,k).

Thus 1 + 2& dn a+ ^Vdn2a = (1 + £
2
)(1 + »;

2)cn2
a.

Solving the quadratic for >?, we find

- £dn a ± sn a en a(l + g
2
)H 1 + k"2^f

£
2k*2sri2a— cn2a

As was to be expected, this is rationalized by the

substitution £=sc(w, k), and becomes

si i a en a dn a + sn a en a dnu
cn'-'u cin( — //-sn2a sn2

l6

. . Bnucnttdna+snacnadntt
so that sc(?' + «) = —5 s ft,—o— —>
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the lower sign being taken in order that the two sides

may agree when u = 0. This is justifiable because a
was found from its en and dn, and therefore the sign

of sii a is as yet undetermined.
The equation just found is one of the addition-

formulae. Others may be written down at once from
the figure. For instance,

Pr+TQ = 2RKin(</>-0),

that is, (ii-f-())sii(({(lnn + (liir}

= (R+ 6)( 1 + dn ct)(sn v en u— sn u en v),

sn( it + a)cn a — sn u cn(u+ «) sn a
(it

dn( u+ a) + dn u 1 + dn a

§ 107. When the outer circle and AB, the axis of

symmetry of the figure, are kept fixed, the quantities

a and k depend on the position and size of the inner

circle. It is of some importance to know under what
circumstances the modulus k will be constant.

Now k2= 4,RSI{(R+df-rz
}.

But if s is the distance from {} of the radical axis of

the two circles

8
2-R2= (8-S)2-rz

,

and 2sS = R2+ S
2 -7*,

so that s = 2R/k2 -R.

Hence if the inner circle vary so as always to have
the same radical axis with the outer, the elliptic

functions will have the same modulus. The quantity

a is then the argument belonging to the other end
of a chord of the outer circle drawn from B to touch

the inner circle

§108. An interesting case is that in which the inner

circle has its radius zero, so that all the tangents to it
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pass through the inner limiting point of the coaxial

system.

In that ease cna= 0, so that a is an o<l<l multiple

of BT, if real. Let L be the limiting point. Then if

PL produced meet the outer circle again in Pv the

argument u-\-K belongs to the point 1\.

Thus u -\-'lK belongs to P. It should, however, be
noticed that when the argument u is increased by IK
in this way, is increased by ir only, so that sn n
and cn it have signs opposite to those they had before.

The signs of BP and AP are in fact changed, be-

cause the positive direction of measurement has been
changed in each case by a rotation through two right

angles.

We have then sn a = BP/BA
,

cnu = AP/BA,
dii u= LPILB;

and, travelling along the arc PAPV

m(u+K)=BPJBA,
cn(u+K)=-APJBA,
dn(u+K)=LP

1
/LB.

X( »\v 1U\ = BA smBPL = BA sin PBL x BLjPL
= PA . BL/PL.

Thus im(u-\-K) = cdu.

Also AP^PB.AL/PL.
Now A L/BL = dn K = k'.

Thus cn(j6+ /i)= — //sd a :

and since I'L . L1\ = BL . LA,
(]\\{n -\-K ) = //nd a.

§ 109. The coaxial system of circles have a common
self-polar triangle of which L is one angular point,

the other two being // the other limiting point and
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the point at infinity in a direction perpendicular to

A />', which we may call M.
The figure shows that if UP and MP meet the

circle again in P., and P.,, the arguments belonging to

P., and /'., are K—u and —u respectively, for iJ.2
P3

passes through L.

But since sc(2iK'— u) = scit, every point on the

circle has two distinct (that is, not congruent) argu-

ments belonging to it, and the second arguments
belonging to P

2 , P3
are respectively congruent to

•2iK'+K+n and 2iK'+u (mod. 2K, 4iK').

It is now clear that it" the inner circle in Jacobi's

construction is replaced by a circle of the same coaxial

sytem, but containing the other limiting point, then

the quantity a is not purely real but has its imaginary
part equal to an odd multiple of 2iK'. If on the

other hand a is purely imaginary, its en and dn are

real, so that the inner circle is to be replaced by a

real circle of the system, but one which contains the

original outer circle.

§ 110. By help of the foregoing we can answer the

following question : Can a polygon of an assigned

number of sides be inscribed in one given conic and
circumscribed to another ?

Project the two conies into circles as before. Let ti

be the argument of one angular point, u+ a that of

the next, then u+2a will be that of the third, and so

on, and if the polygon has n sides and is closed the

argument u+ na must belong to the first angular

point.

Hence a+na=u or "liK'—u (mod. 27i, \iK').

Suppose first that

u+na= 2iK' — u,

then w+ a = '2tK'— u—(u — l)</.

a + 2u 2th" — n — ( a — 2)i i. etc.,
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so that tlif second angular point coincides with the

nth, the third with the (n— l)th, and so on. Thus
there is no proper polygon in this case.

If on the other hand we take u+na = u we find

a = (mod. 2K/n,<±iK'Jv).

This condition does not assign any of the angular
points, but only shows that unless the two conies are

related in a particular way the problem has no solu-

tion. If the conies are so related, that is, if a lias one

of the values included in the formula (2rK+4*stK')jn,

then the value of u does not matter, and any point on
the circumscribing conic may be taken as an angular
point of the polygon.

ARCS OF CENTRAL CONICS.

$ 111. It is most likely known to the reader that

the length of any elliptic arc can be expressed in

terms of the coordinates of its ends by means of the

elliptic functions sn, en, tin, E, and that it is from this

fact that the name " elliptic" arises.

The ellipse x2/a2+ y
2jb2 =l is the locus of the point

(asnu, bcn.il) for different values of the argument u.

If S is the length of the arc measured from one end
of the minor axis (0, b) then S vanishes with u and

(

(

18/d i()
2 = {< i

2cn?U+ fr
2sn%)d n'-n

= <i
2(l—e-Kri2u)dn2

u.

So far we have not assigned the value of k. If we
take e for its value we have
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This expression holds equally well for the hyperbola,

but it is not so useful, as the modulus of the elliptic

functions is then greater than 1 and the point from
which the arcs are measured is imaginary, b being

imaginary.

$112. In the hyperbola x2/a?-y2/b2= l we may
however put

y = b cs(K — a ) = bk'sc u,

x — a ns(7v — u) = a dc u.

so that u vanishes for the point (a, 0).

If S is the length of the arc measured from this

point we have

(dS/duf = («
2//4sc%+ b2k\\chi)nchi,

= bV/'hichi,

if a2^2= b2Jc2, that is k=l/e.

Thus dS/du — bk'nc-u if k = 1/e,

am 1 $ = ae{sc u dn u+ Jc'hi — En).

^ 113. The equation

Eu+ Ev - E(u+ v) = k2sn u sn v sn(u+ v)

may be expected to furnish a geometrical theorem
concerning arcs of a central conic.

We in nst first find what geometrical condition is

expressed by such an equation as u— v = t, connecting
the arguments u and v of two points on the ellipse.

It will be more convenient to put

u= a+fi, v = a— (3.

The tangents at u, v are then

^ sn(a ± /3)+ !l

b
cn(a ± $)= 1

,
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and at their intersection we have

- sn a en ft dn ft+ ' en a en
ft
— 1 — Zj

2sn2a sn2/8,

.' =y a,sn /3 en a dn a = % sn a sn /3 dn a dn ft,a b r ^

whence a?

=

a sn a dc /3,

?y= 6 en a nc/3.

Eliminating a, we have

a;
2/a2dc2

/3+2/
2
/6

2nc2/5=l.

Eliminating /3, we have, since e is the modulus,

x2ja2
e
2
B\\

2a — y
2/a2

e
2cn2a = 1.

Each of these conies is confocal with the original

one. Thus if u ± v is constant, the intersection of

tangents at the points lb, v traces a confocal conic.

$ 114. At a point on the tangent at u whose dis-

tance from the point of contact is z we have

x— a sn u_y — b cnu _ z

acnu — bsnu adu "'

so that x = a sn u+zcdu = a mu+z sn(u+ K),

y = b en u+ z cn(u+ K).

It is hence easily found that the lengths of the two
tangents at (u±ft) measured to their intersection are

a sc/3 dna dn(u±/3).

Call these tv /., Then

l
x
+ t

2
= 2asc

i
8dn2adn

i
S/0 - &2sn2a sn2/3),

/, — t
2
= — 2ae2sn2)Q sn a en a dn a ( 1

— //-'sn-« sn2^8).

Now by the addition-formula for the function E
/•,'< a +(3)- Ea - Eft = - /•'sn a si i ft

sn( a + ft),

E( a- ft)- Ea + Eft = / -si i a si i si i(a - /3),
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and by additioD and subtraction

E{a+P)+E(a-P)-2Ea
— — 2&2sn2/3 sn a en a dn a ( 1 — &2sn2a sn2/3)

= (*1
-*

2)/a,

E(a+p)-E(a-l3)-2Ep
= - 2&2sn2a sn /3 en /3 dn ,8/(1 - £2sn2a sn2

/3)

= (<1 +i2)/a-2sc i

8dn
j

8.

If then u + /3, a — /? are the arguments of the two
points P and Q tlie tangents at which meet in T, and
if B is the point from which the arcs are being

measured, we have, when T traces a confocal ellipse,

so that /3 is a real constant,

arc BP — arc BQ— TP — TQ = a constant,

or TP+ TQ- arc PQ = a constant

;

and when T traces a confocal hyperbola, so that a is a

real constant,

arc BP+ arc 7iQ - TP+TQ = a constant = twice arc BR,

if 72 is the point of intersection of the hyperbola and
ellipse between P and Q. Thus

TP- arc BP = TQ- arc BQ.

§ 115. This applies also to the hyperbola, but since

in that case b is a pure imaginary the relation

TP+TQ- arc PQ = a constant

holds when T moves along a confocal hyperbola, and

77 > - arc BP=TQ- arc RQ

when T moves along a confocal ellipse.

For geometrical proofs of these theorems, which
are due to Dr. Graves, see Salmon's Conic Sections

Chap. XIX.
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It is noticeable that the system of confocal conies is

the reciprocal of a system of coaxial circles with
respect to one of the limiting points, so that this case

is closely connected with that of ^ 107-110.

A CASE IN SPHERICAL GEOMETRY.

$ 116. Another case of a doubly quadratic relation

between two parameters is afforded when an arc of a

Hit 'at circle moves on a sphere so as always to have
its two ends on two fixed great circles, its length
being constant.

Let FQ, P'Q' be two consecutive positions of the

movable arc, OFF', OQ'Q the two fixed arcs (Fig. 3).

Fig. 3.

Let OF = 6, 0P'= e+ dd, 0Q= <p,

<)(/ = </>+ </</>, P0Q=A, PQ=a.

Then the integral equation connecting and </> is

cos 6 cos <£ + cos A sin 0sin = cosa.

To form the diU'nvntial equation, since PQ= P'Q', we
haw PF cos OPQ=Q'Q cos OQP in the limit, that is,

( 1 — sin'-vl cosec2a sin ''</,)"< /0

+ (1 — sin'-J c()scc"a sm 2
0)'-(J(p = 0.
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We may then put

sin 6 = sn u, cos 6 = en a, cos OQ-P = dn it,

si 1 1 = sn v, cos r/> = en v, cos OPQ — dn v,

the modulus being sin A cosec a, and we have

c? (4 + dv = 0, u + v = constant = w, say.

Then W is the value of v given by supposing u and

therefore 6 to vanish, so that

sn w = sin a, en w = cos a, dn 10 = — cos A
,

and we have en iv= en u en v— dn w sn it sn v,

that is, cn(u+ v) = en u en r — sn u sn i> dn(u+?>)-

This is one of the addition-formulae.

We have also

cos 6= cos a cos <p+ sin a sin cos OQP,

or en u= cn(u+ i>)cn v+ sn(u+ v)sn v dn u,

and en v — cn(u+ v)cn u + sn(u+ r)sn u dn v.

These three equations may be solved for

m(u+ v), cn(u + v), dn(n+ v).

If the modulus is to be real and less than unity and
w real, we must have A obtuse and a+A greater

than two right angles. We may then write

sin = sn u, cos 6 = en u,

sin <p = sn(iy— u), cos = cn(iy— u),

iv being a constant.

$ 117. In this case we have

dO/du = dn m or du/dd = (1 - /c
2sin20)~*

The function of u which satisfies this condition and
vanishes with u was called by Jacobi the ampli-
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tude of u, it being the upper limit on the right-hand

side of the equation

u —
f
(l-jfc2sin20)

h
dd.

It was also customary to write AO for (L — /,~sin2#)-.

Thus sn u, en it, dn a were conceived as the sine,

cosine and A of the amplitude of u, and in Jacobi's

notation were written sin am n, cos am n. A am n. the

amplitude 6 being denoted by am u. The shorter

notation, sn, en, dn, was suggested by Gudermann.
The function am u is of no importance in the theory

of elliptic functions, but it sometimes presents itself

in the applications of the theory. In the case con-

sidered we may, for instance, write

= amw, (p = am(«;— u).

APPLICATIONS IN DYNAMICS. THE PENDULUM.

$ 118. There are certain problems in dynamics
whose solution can be expressed by means of elliptic

functions. The simplest is perhaps that of the motion

of a pendulum.
The equation of motion is

l6=-gamd,

where 6 is the inclination to the vertical of the plane
through the axis of suspension and the centre of inert ia

and I is the length of the simple equivalent pendulum.

A first integral is found by multiplying by 6, it is

\lfr = !/(k+ C< «3 6)= g( 1 + k - 2 si n -
J, )

,

k being a constant. To integrate this put

0=2am{tt, 2*(1 +*)"*},
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so that sin h0 = sn u,

cos ^0 = cnu,

l+ K-2 sin-' \,6 = (1 + K)dn2u.

Then ii
2= (l+ K)g/2l,

and it = £{(l+/c)<7/2£}*+const.

$ 119. Let A, B be the highest and lowest points of

the circle described by the centre of inertia of the

pendulum, P its position at any time, h its distance

from the fixed horizontal axis, and let

(l+ K)g/2l = n\

Then BP=2hmnf,
AP = 2h en nt,

if the time is measured from the moment when P is

at B.

If PY is the perpendicular drawn from P to a

horizontal plane at a distance kJl above the axis, that

is, at the level of zero velocity, we have

PY= {1+ K)hdnh}t.

Let BA, produced if necessary, meet this plane in C.

Then let a circle be described having CY as its radical

axis with the circle APB. The tangent from P to

such a circle varies as PY"1
, that is, as dnnt. Hence

the figure is the same as that in Jacobi's construction

(§ 105 above).

§ 120. The application of the addition-formula will

then give us the following theorem :

—

The envelope of the line which joins the position of

the centre of inertia at any time to its position at a

fixed interval afterwards is a circle of the coaxial

system which has for radical axis the line of zero

velocity, and includes the circle described by the

centre of inertia.
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When the pendulum is performing complete re-

volutions k ^ 1, and the elliptic functions have a

modulus < 1. Thus if the fixed interval is half the

whole time of revolution, the straight line joining the

two positions will always pass through a fixed point,

namely, the inner limiting point of the system of

circles, whose depth below the radical axis is

Further, the envelope of the line joining two variable

positions of the centre of inertia, which are separated

by equal intervals of time from any tixed position

(one before, one after) is a circle of the same coaxial

system ; and if the revolutions are complete, and the

fixed position is at a depth /t(/c
2— 1) below the line of

no velocity, the line always passes through the outer

limiting point.

The velocity of the centre of inertia varies as the

tangent drawn from it to any fixed circle of the

coaxial system, or in the case of complete revolutions

as the distance from either limiting point.

§ 121. In the case when the pendulum oscillates,

1— k is positive, so that the modulus of the elliptic

functions is greater than unity. The expressions may
be transformed by the usual formulae: putting g= Ira2

,

we have

BP= 2*(1 + K)*&sn rat,

AP= 2hdamt,

the modulus being now 2
-
*(1+k). The velocity

varies as en rat.

The general theorems derived above from the

addition-formula still hold, the system of coaxial

circles having now real intersections, namely, the

extreme points reached in the oscillation. The limit-

ing points are however imaginary, and the line joining
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positions separated by an interval of half the period
is always horizontal, as is also that which joins two
that are separated by equal intervals from the lowest.

The coaxial circle, which is the envelope in this case,

consists of the radical axis and the line at infinity,

and the tangents to it pass through their intersection.

MOTION OF A RIGID BODY UNDER NO FORCES.

§ 122. Another interesting case is that of a rigid

body in motion under the action of no forces. The
centre of inertia will then move uniformly in a straight

line or be at rest, and the motion of the body about
its centre of inertia will be unaffected by the motion
of the centre of inertia, which we will therefore

suppose to be fixed.

Let cov a)2 , ft)g
be the angular velocities of the body

at any time t about its three principal axes of inertia,

and let A, B, C be the three corresponding moments
of inertia, and suppose that they are in descending
older of magnitude.
The equations of motion are then

A(b
1
= (B— C)u>

2
w

3 ,

Bdo.
2
= (C — A)u).

3wv
Ca)s= (A — i^cojov

The form of these suggests a substitution

oa
1
= a en qt, a\

2
= —

ft sn qt, «3
= y dn qt,

since the sign of G—A is negative and opposite to

those of B-C,A -B.
Making the substitution we have

Aqa = (B-C)[3y,

-Bqj3 = (C-A)yu,
CqyW=(A-B)ap.
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" Ad2 B/3- CyW. a/3y ,Hence „—~= .
'

ri— / „= -1—'- = r, say.B—C A — G A—B q J J

The equations are therefore satisfied if

a>i=j\ 2 -) en q(t-t ),

where ij (i?-g)(^ -(7)(^-^te q -Jc\ ABC J'

and the arbitrary constants of integration are j, the

modulus /.', and £ .

The following two important equations are easily

found either from the equations of motion or the

integrals :

—

At,;2 +Bte.? +<V =j\A-k'*B-WC)IW=T}
sxy,

AV+#V+ C'V=JWAB+ fc'M C-BC)/k2=G*, say.

$123. Suppose now that (/, //>, n.) are the direction-

cosines of a straight line fixed in space. We (Inn find

ii = Io\
2
— moov

and fr> p «).,, &)3 ,
are m>w known functions <>!' /. If these

equations can be integrated the problem is completely

solved.

The equations give

II + nn)t+ nil = 0,

and therefore 2
2+m2+7i2= constant.

The value of this constant is known to he I.
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A I s« » A(oJ -\- B<a2m + Cw3n
= 1(0— H )co.2co3+ m(A — C )eo3ft)i -f n(B— A )ft)1w2

= — Al(b
x
— Bm<jo

2
— Cn<a

s
.

Hence Ala\-{- Bntw
2+ Cnoo3

= K, a constant.

This equation expresses that the line (l,m,n) makes
a constant angle with that whose direction-cosines are

(AwJG, BodJG, GcoJG) and shows therefore that this

latter is fixed in space. It is easily found that the

equations are actually satisfied if

l = AwJG, m= Bw2/G, n= GeoJG.

§ 124. We may now simplify the problem by sup-

posing the line (I, m, n) to be perpendicular to this

known fixed line, that is by putting A" = 0.

Let (A, ju, v) be the direction-cosines of another line

perpendicular both to (/, m, n) and to

(Aco
1IG, Bo)

2
/G, CwJG),

so that G\ = C>nw.
i
— Bnw.„ etc.

Then since (X, fx, v) is also fixed in space we have

X= /ao>3
- VO\p

and IX — \l = (If/.
— \m )<w3

— {lv — Xn)w2

= — (Bw.) 1+ Cw
3
~)/G

= -{T-Aa>i2)/G.

Also 2
2+X2+^W/^2= 1 -

Hence . arctan l/X = G(T—Aw^/^G2 — A-w 2
).

Thus I = X tan v,

~) G*-A*u*
This integral can be expressed in terms of the

function II, for the subject of integration is a known
function of t.
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Then I, m, a are given by the equations

j I la)] + Bm<a
2 + ( 'na>

s
= 0,

G£ cot v — Gmw
3+ 5ucD

2
= 0,

I _ m
3

2
C'Crct)

3
COt y — J. Bco

1
w2

_ w
— BGoD.2cot v— A C'w

1
(o3

1

"(JcosecK^V+ ^'V)4
'

To find A, /*, i' we need only change v into v+"
}

in these expressions.

Referred to the three fixed axes, the direction-

cosines of the principal axis of greatest moment are

(AcoJG, I, X), those of the mean axis (BcoJG, m, /*),

and those of the third principal axis (Co\,(i, v , v).

Hence the orientation of the body is completely

determined at any time.

The actual value of v is found to be

y +G(*-* )/a+JI{?(*-< ),a}

if sna=i{A(B-CyC(A-B)} h
,

the values of cna, dna being both positive, as well

as that of -isna. v is the value of v when t=t
,

and it varies according as different straight lines in

the ' Invariable Plane" are considered, a is a purely

imaginary constani depending on the nature ol' the

rigid body, k may be any real quantity. If it is

numerically greater than unity the formulae may be

reduced by the usual transformation to others in which
the modulus is less than unity.

The values of arctan th /uandarctan n v might have
been found in terms of II functions instead of that of
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arctan / \: the formulae thus found must however
reduce to those we have by means of the formula for

addition of parameters in the function II.

A further discussion of the motion, with references,

may be found in Routh's Advanced Rigid Di/namics
(Chap. IV.).

ATTRACTION OF AN ELLIPSOID.

§ 125. The potential of a solid homogeneous ellipsoid

at any point may also be conveniently expressed in

terms of elliptic functions.

The expressions

x2= a2a'2a"2/(a2-b2)(a2-c2
),

y
2= b20n"2/(b2 -c2)(b2-a2

),

z2 = c
2
c

2
c"2/(c2 - a2

)(c
2 - b2 ),

for the coordinates of any point in terms of the semi-

axes of the three conicoids of a confocal system that

pass through it, suggest that we make x, y, z constant
multiples of S, G, I) respectively where

S = sn itj sn u
2
sn il

3
= s

1
s
2
s
z , say,

C'= en u
x
en u.

2
en w

8
= c

x
c
2
c
3

.

I) = dn iij dn u,
2
dnit

3
= d^d^d^.

Since kW\\2 - k2c 2c 2+d 2d 2 = k'
2

,

we have k2
k'2S2

/s
2-k2C2

/cr
2+ D2/d 2= k'2

,

where r=l, 2 or 3. This equation is the relation that

connects S, C, 1) when u r is a constant.

If then we put

x= I . k2k'S, y = l. k2G, z=l.iD,

I being any constant, the locus of (x, y, z) when n r is

a constant will be a conicoid whose semi-axes are the

square roots of
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The (inferences of these quantities are constants, so

thai the different conicoids are all confocal.

$ 126. For an ellipsoid the imaginary part of /',-

must be an odd multiple of iK'. It will be more
convenient to have u r real in this ease: we therefore

put u, .+ iK' for ur throughout, and we have

x = Ik'/kS, y = l.t D/JcS, z=-l.C/8,

the squares of the semi-axes being now

1%'2/S*, /-/•'-,/,->,-, Z
2&'V/Sr2.

When ur is constant and real, we now have an

ellipsoid, when its real part is an odd multiple of K
a hyperboloid of one sheet, and when its imaginary
part is an odd multiple of iK' a hyperboloid of two
sheets. In other cases the surface n r = constant is

imaginary.

Since then one surface of each kind passes through
any point, we may suppose iiv t(u2— K), ".. — <7v' to

be all real.

The semi-axes of the local ellipse are found, by

]
nitting Ur= K, to be Ik' and Ik'

2
; and, as / and // are

arbitrary, these may be made equal to any lengths

whatever, so that any system of confocals whatever
may be represented in this way.

$ 127. We must now transform the equation V-r=0,
that is,

92F d2V 32F
dx2 + dy2 + dz*~

Now. in the first place, if V is expressed in terms

of S, C, D,

OV dV . dV j dVu , ,
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3'2T,r 32y 32y 32y—— — r "V -s' "v -4- -<? 2/7 -V '-',. ^_L 7/.4„ 2,, 2.7 2J 2

C'11
2 ~ dS* ]

'
2 3C2 * x

-
; 7) 2 x

'
2 3

32 jr 32 y

327- 37
~~

dSdG l
s
i
c
i
s
2
c
2
s
3c3
—
3^

sr
92'93V^i"+ /''"'C

1 )

3F
2

3F ,

with symmetrical expressions for d2 V/dii
2
2

, ?PV/du3
2

.

Thus

(s
2
2-s3

2
)3

2 Vfou*+ (83*-s*)d
2 V/du 2+ (s

2 -s. 2)d2J7^
3
2

x [3
2 V/dS 2+ //

232 F/302 - //2 /,
432 F/3D2

]

,

all the other terms disappearing.

If then we put x= lk2k'S, y = lk2C, z= UD, we have

-(V-%W " Sl
2
X*l

2 " S*
2)*W2V 2F

= (s
2
2-s3

2
)3

2F/3V
'+ (s

3
2- Sl

2
)3

2 V/du*+ (Sl
2- s.

2)d2 V/du*.

If now we change u r into ur -\-tK', this becomes

- (tf" tfXtf"VXV~S.fW2V 2
F-f-^V*3

2

= s
1

2
(s

2

2 -s
3
2
)3

2 F/32t
1
2

+ s
2
2(s

3
2- Sl

2
)3

2V/du*+ s
3
2(s

1

2- s
2
2
)3

2 Vj-du 2
.

The equation V 2F=0 is therefore to be replaced by

s
2
(s

2 -s 2)d2Vfiu 2

+h\h2 ~ Si'
2)3'2 F/Bu2

2+ 8
S
%8*- s2

2
)3

2 F/9it
3
2 = 0.

§ 128. Now it is known that the equipotential sur-

faces of a thin homogeneous homoeoid (shell bounded
by two similar, similarly situated and concentric

ellipsoids) are the confocal ellipsoids that lie outside

it, that is, the surfaces represented by u
x
= constant
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if our confoca] system is that to which the surface of

the shell belongs.

If V is the value of the potential it is a function of

u
x
only, satisfying the equation just written, which

now becomes
3*7/3,^8= 0.

Hence V=Qu
1+ R, Q and R being constants.

Now V vanishes at infinity and at very distant

points is in a ratio of equality to M/r where M is the
mass of the shell and r the distance of the point from
the centre.

Also at infinity 1^ = 0, and for small values of v
x

the surfaces may be regarded as spheres of radius l///sv
Hence when ?r

1
is small we have

MsJlk^Qu^+R,
that is, R=0, Q = M;i//.

The potential of the homoeoidal shell is therefore

MuJW.

§ 129. If now we have a homogeneous solid ellipsoid

whose semi-axes in descending order of magnitude are

>f, //, < and whose density is p, it may be divided up
into thill homoeoidal shells, to each of which the lore-

going will apply ; To get the different shells we need
only suppose I to vary in the above expression from

to y,Kni\, its value for the outside surface, v
1
being

the constant value of Wj for the outside surface referred

to its own system of conl'ocals.

The sum of the volumes of all the shells up to any
value of / is

.'.Tr/^/^cn Vjdn v1/sn
svv

so that we substitute for J/ the expression

4-7rpl
2dl . //3en ty.ln vJbjisvv
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which is the differential of this with respect to I

multiplied by p. The potential of the solid ellipsoid at

an external point is therefore

4nrpk 2cn vAn v, C
k

'

, 77

sirf
x J

x

(i

and itj is given as a function of I by the equation

a^sn2!^+ ^sd2^+ s2sc2 it
1
= £

2//
2

,

(a;, ?/, 2;) being the coordinates of the external point.

We find at once

ir-l dl = {x\c
x
d

x + y\cx
lds+ zh^ljc*),}^.

Thus if now we write u
x

for the value of v
A

at

(x, y, z) in the system of confocals to which the outside

surface belongs we have for the potential

47rp en vAn v, f
"i , „

, 9 ,. _ . . .
7—-—5-^ M u { ar+ yn<r a + 5-nc4

it sn u en w,dn udu
sns u

1 J
^

27rpcnvAnv,r , . „ , «, „ . . .

=—£- = — u
1

a;
2sn2

(t
1
+i/2Kd-H,

1 +:2
,sc

2H,
sn^j L x *

— I (x2an2u-\-

y

2ad2u+z2ac2u)du .

Also by definition of i^,

orsn2^ + 2/

2sd2ttj + 3
2sc2 »

:l

= G^sn2^,

f
!<1 w 1

and an2udu=j^—r^Euv
11

p jo , 1 snu^cnu, ^ 1 „

J k 1 dn Uj A:
2 klk L l

f"
1 „ , 1 sni^dnw, 1 „
sc-u du =

,
,„ ± * — .-Tjiu,.

J A'- cnUj A;-
x
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Hence the potential

r
u

1{a?sn
2v1-(x

2
-y*)lk*}

_2xpcn r
{
dn r,

,•:,

i
sir'/-

sn w

Here //- = (a2- 62)/(a2- c
2
),

dn v1
= b/a,

en i^ = c/a,

sni'
1
=(fl2 -c'2)

3
/",

and n
x
is the least real positive argument that satisfies

the equation

a^sn2^+ y
iad2u

1 + s'sc2 h
x
= a2— c2 .

If the point (x, y, z) lies on the outer surface, we
have 1^=1^

§ 130. If the point (x, y, z) lies inside the ellipsoid,

the above formula ceases to hold. We may however
describe through (x, y, :) a similar, similarly situated

and concentric surface, and use the above expression

for the volume contained.

If ~\(i, \b, \c are the semi-axes of this one, its

potential is

+
/-cn, |( ln,

1

( ^(
'

,1"^- :
-,1,r '^ )
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We have then to deal with the outer shell. This

may be divided into thin homoeoids as before. The
potential of each is the same at all points inside it,

and equal to

^irpl dl . k^v-^n i^dn vjsnh\.

This is to be integrated with respect to I between the

limits \<( sn y
3

/,:' and a sn vjk', and added to the

potential of the inner part.

The integral is

2irpa2( 1 — X2
) . v

1
cn v

x
dn vjsn vv

and the potential of the whole ellipsoid at an internal

point (x, //, :) is found to be

2irp en i\dn v
x

Asn°y
i

snv

Vl{aWrr(^ffj

+ ,,., } (/cn2^ - 3 2dn2 r
x )

Tlie expression is the same as for an external point,

but that the constant t\ takes the place of the

variable uv

EXAMPLES ON CHAPTER X.

1 . Prove that ( 1 — 2#2cos 2a+ a;
4
)
2 can be rationalized

by | tutting

x+-= 2 ns(2u, cos a),
x

and that then x— = — 2 cs(2u, cos a),
x



124 ELLIPTIC FUNCTIONS.

(x2 - 2 cos 2« + -
2) = 2 ds(2u, cos a),

u=
f
(1 - 2.v

2cos 2a + x+y -dx.

o

2. Discuss the spherical figure of § 1 1 (5 in the case

when sin A > sin a and show that in that case we may
put

sin OPQ = m(u , sin a cosecA),

sin OQP — sn(?(;— u, sin a cosec A ),

w 1 1 ere tt —A = am w.

3. If cos 6 = cos B dn ?? , tan d>— —
. , sc u,

1 7 sin p

where cos « = // eos/3, prove that the point whose polar

coordinates are (A', 0, 0), R bein^ a constant, traces a

sphero-conic whose semi-axes are a, /3 and that the

.ma of a central sector of this sphero-conic is

dn ii du

+ cos/^ dn ul

4. Prove that the chord joining the points a±a on
this sphero-conic touches the sphero-conic whose equa-

tion is

cot2# cn2
<x = cot2

/3 dn2a cos2
c/>+ cot2a sin2

^,

and that this has the same cyclic arcs as the former
one.

5. Show that the sector hounded by the senii-

«
1 i

.-

1

ters to tin' points u±a differs from

s>P2 +
<m "( sll'~"+cn2« cos-/5) + dn a cos/9

-i-/i
_arctan ; ;—^

sn a en <( sin a sin p
hy a quantity independent of tt.

Prove also that the area of the spherical triangle

//'sin <( sin p|
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Formed by these two semi-diameters and the chord

joining the points ii±a is

_ T1) ,
sin a sin ft sn a en a dn u

2//-nretan ^—^—

—

-, ; ^,
1 — sn-a snra + an u < In a cos ft

ami that the area of the segment cut off* by this chord
is independent of u.

(i. In the same sphero-conic

(cot2 = cot2a sin2 + cot2
/3 cos-0

)

prove that by the substitution

tan (p = tan a cot ft sin a cosec ft ca(u, k),

where k' = sin ft cosec a

,

the expression for the arc is reduced to

R tan a tan ft sin ft \
-
L—^

—

5
— —

5 s— •

'

J tamp sn-^+ tama cnzu

7. Prove that at the intersection of tangents to this

sphero-conic at the points u±a (as in Ex. 6, not Ex. 3)

cot 6 _ cot a sin
<f> _ cot ft cos <p

en a dn u dn a en u k'sn u
ami that as u varies this point traces the confocal

sphero-conic

cot 2
(9 nc2« =cot 2u sin 2 nd2a+ cot2^ cos 2

</j.

8. The length of the tangent at 11+ a in the last

example is

„ tan a tan ft sn a sin ft

tan2a en it cn(?t + < ' )dna + tan2
/3 snu sn(u+ a)

Find the differential coefficient of this expression with

respect to u in the form

R tan a tan 8 sin £ ., .,,
,

^rr—.y —•>/—r~
\^ Ltan2a cn^u+ a)+ tairp sn-(-u + a)

1

t a 1 i

2a en2
it+ tan2

/3 sn2uS
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and prove that the sum of the two tangents exceeds

the intercepted arc by a quantity independent of u>.

(Compare Salmon, Geometry of Three Dimensions,

§252.)

9. Verify that when

sn2 ifc tan2
/3+ cn'2 u tan2a = 0,

then

Sll (I = ± , eos /3, en u = ± , sin (3 cot a, dn a = ±sin (3,
1

1

'

fc

and the above expression for the length of the tangent

becomes R arctan±i.

10. Prove that the following equations give the

motion of a heavy particle constrained to move on a

fixed smooth spherical surface:

—

cos 6 = cos a sn-o)/ + cos /3 cirW,

if [

wt du
~ 4 U s"12

•; a S1^U+ sin2|/3 en
2
it

'J cos ;'!,< sir/' +cos'-J,
/

#cn-« J
'

where 6 is the angular distance of the particle from

the lowest point, a, ft are the greatest and least-

values taken by 6 during the motion,
<J>

is the angle

made by the vertical plane through the centre and
the particle at time t with its initial position, I being

measured from a time when = (3, I is the radius of

the sphere, and

7c
2 =(cos2/3-cos2a) ( I +cos2/3+2cosacos/3),

1 fa(cos/3— cosa)"|
!
-

W=R ~27 / '

n2= 4 sin2a sin2j8/( 1 -|-cos
2/3+2cos acos/8).
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1 1. Reduce the above value of (/> to the form

n{wt cosec2j8+£sc a cosec ha cosec l(3ll{cot, a)

+ ]sc 6 see \a sec i-/3LT((o^ 6)},

where tin a = sin £ a/sin |/3,

(In 6 = cos |a/cos |/3.

What is the general character of the motion?

12. On a curve of deficiency 1 and degree n, the

sum of the arguments of its intersections with a curve

of degree m is <x. Show that if n > 3 the fact of the

sum of the arguments of mn points on the curve

being <x does not ensure that the points lie on an mlc
,

but that if n = 3 this condition is enough.

13. If the curve of intersection of two conicoids is

projected from any point of itself on any plane, the

projections will all be projections of the same plane

cubic.

[The anharmonic ratio of the four tangents drawn
to any of the cubics from a point on itself is the same
for all. It may be expressed as a function of the

elliptic modulus.]

14. Verify that the expressions found (§§129, 130)
for the potential of an ellipsoid satisfy Laplace's and
Poisson's equations, and find the components of the

attraction at any point.

15. In Jacobi's coaxial circle figure (Fig. 2, §105),

prove that when a= iK', is at B, and when
a= K+tK', at A. In general when lies between
/. and L , so that the variable circle is imaginary, the

real part of a is an odd multiple of K.

16. The arguments of the circular points at infinity

are ±iK', and of the other common points of the

coaxial system K±iK'.
17. If I, m, n are in descending order of magnitude

show that the two ends of a chord of the circle
,'•'- + //'" = "'" which touches the ellipse x2

/l'
2+ y'2/n2=l
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have for their coordinates fcmsn(w + fl), mdn(u + a),

where
, . l

2(mr— a-) n , n
/.-= 0/> ., (, en ci = -r, ana= ,m2(r— n1

) I m
and ?( is a variable parameter.

18. If x-\-iy = sn(u-\-tv), the points on the curves

u= const., v — const, at which the tangents are parallel

to the axes of coordinates, lie either on one of those

axes or on a rectangular hyperbola whose axes they

are. (See Appendix A.)

19. If

x-\-iy = sn\u + iv)

or cn\u+iv) or dn2(u+ iv) or ^(it+ tr),

the curves u = const., v= const, are confocal Cartesian

ovals, and for one value of each the oval becomes a

circle. Distinguish between the outer and inner ovals.

(Greenhill.)

20. Examine the curves u = const., v= const, when

x+ iy = sn ( a+ 1v)dc(u + iv).

[The distances of the point (./•, //) from the points

(±/t', ±//) are found to satisfy two linear relations.

Eence the curves are bieircular quartics having these

points for I'oei. In the particular eases when u— ± \J{
y

or v= ± \K' they become arcs of the circle aj
2
+2/2== L]
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THE GRAPHICAL REPRESENTATION OF
ELLIPTIC FUNCTIONS.

§ 131. The nature of the elliptic functions unfits

them for representation by a linear graph as in the

case of functions of a real variable. We may however
get some idea of their variations by means of Argand's
Diagram.

Let x + iy= sn(u+ tv),

x, y, u, v being real, and let us examine the curves
u= constant, v = constant ; we need not consider values

of u outside the limits ± '2K or of v outside ± K'.

Call the point (x, y)P and the points (1 , 0), ( — 1, 0),

{Xjk, 0), (- 1 Ik, 0),A,B, G, D respectively. Then

AP2 ={l-Hn(u+ iv)}{l-sn(u-iv)}

= (en iv — dn iv sn ufl{l — k2an2u snhv),

BP2 = (en ( v+ dn tv sn ufj{\ — /( :
2sn2

it sn2
tv),

k2CP2 =
{
1 - k sn(u+ iv)}

{
1 - k sn (u -iv)}

= (dn iv— k en i v sn u)2j(l — k2sn2u sn2
tt> ),

WDP2 = ( dn i v+ k en tv sn uf/{ 1 -kWu snhv).

Hence
BP-AP _BP+AP_DP-CP_ ljDP+CP)
dn tv sn u en iv en ( v sn u dn iv
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Thus the locus when v is a constant is given by

BP-AP = {DP- CP)dc iv,

or the equivalent

BP+AP= /( Z)P+ C'P)c< I iv.

The locus when u is a constant is given by

BP-AP=k(DP+CPymu,
or BP+AP= (£>P-CP)nsu.

The curves in each case are bicircular quartics having
A, B, G, D for foci. They are symmetrical about both
axes.

The curves v = const, are found to be a series of

ovals enclosing the points (±1, 0) but not the points

(4.«)

The ends of the axes of these ovals are the points

( ± cd ( v, 0) and (0, ± ( sn iv).

When v is indefinitely diminished the oval shrinks up
into the straight line between A and B. As v increases

in magnitude irrespective of sign the oval swells out.

The points on the axis of x are points of undulation
when 2 cd2iv= l+ l/&2 , and for greater values the oval

swells out above and below the axis of x, and is

narrowest at the axis. In the limit when v= ±K', it

becomes the part of the axis of x beyond (±l/&, 0),

together with the line at infinity.

The curves u = const, consist each of a pair of ovals.

one enclosing the points (1, 0)(1/Z\ 0) the other the

points (— 1, 0)(— l/Ic, 0). Each of these cuts each of

the curves v= const, orthogonally.

Of the two ovals, the one on the positive side of the

axis of y belongs to the values u and 2K— u (u being

positive) and the other to the values — u and — 2K+u.
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When u = ± K the corresponding oval shrinks into

the straight line between (±1, 0) and (±l/k, 0), the

upper or lower sign being taken throughout. When
u= the oval swells out until it becomes the axis of

y with the line at infinity.

The curve v — hK' is the circle whose centre is the

origin and radius />~ 3
.

$132. Since

dn(u+ iv, /.;) = //sn(v— i u +K'— i K, //),

the figures for the function dn will be of the same

general nature as those for sn. The foci

(±1, ox±i/M)
are replaced by ( ± h' , 0)( ± 1, 0)

respectively, and the single central ovals are now the

curves u = const., the pairs of ovals belonging to the

system v= const. The curve u = hK is a circle of

radius k .

In the case of the function en the figures are

different.

Putting x+iy= en.(u-\-iv), we have

x — cnu en rv/(l — k2 sn2u sn2
iv),

y = isn u sn iv dn u dn iv/(l — k2 sn2u sn2
n»).

The curves u = const., v = const, are still bicircular

quartics but the four real foci are not collinear. They
are the points (±1, 0)(0. ±k'/k), each of these pairs

being collinear with the antipoints of the other.*

Each of the curves consists of a single oval. The
curves u = const, enclose the foci (0, ±k'/k) and not

(±1, 0). The curve u = consists of the parts of the

axis of x beyond the points ( ± 1, 0), the curve u= ±K
* This may be compared with § 131 by means of the formula

cn(u, k) = sn(k'K — k'u, d'jl
J

),

which follows from equations (20) of § 26.
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of the line between the points (0, ±k'/k). As u de-
creases numerically from ±K to 0, or increases from
±K to ±2K, the oval swells out. It has points of

undulation on the axis of x when

2cn% = l-//2
//,;

2
if k2 >J<f2.

When cn2u is greater than the value thus given the
oval is shaped rather like a dumb-bell, and the two
ends of it expand to infinity as u diminishes to or

increases numerically to ± 2K

.

Since

k cn(u+ tv, k) = — ik'cn(v — iu+ K' — i K, //),

the general form of the curves u = const., v= const, is

the same if one set is turned through a right angle.

There will be points of undulation on one of the

curves v = const, if 7c'
2 > k2, that is if there are not on

any of the curves u = const.

§ 133. These bicircular quartics are shown in figures

4a, ha, 6a, for sn, en, dn respectively. They have been
drawn to scale with some care for the value ,J'l — 1 of k,

and for values of u and v which are successive multiples

of \K and \K' respectively.

In each case the curves u = const, are drawn thick,

and the curves v = const, thin. The figures 4>b, oh, 6b
show on the same scale the corresponding variations

in the argument, corresponding lines in the two figures

being numbered alike. Only one period-parallelogram

has been drawn for each function. In each case the

centre is at the origin.

The figures 4/>, 5b, 6/> are reproduced on a smaller

scale as 4>c, 5c, 6c the parallelograms being divided

into the regions that correspond respectively to the

four quadrants in 4a, 5a, 6a.

In figure 6a the curves v = (), v= ±\K', v= ±^K',
v= ± 2K' are too small to be shown.
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APPENDIX B.

HISTORY OF THE NOTATION OF THE SUBJECT.

§ 134. The notation used by Legendre was as

follows :
—

*

F(k,0)=\ (1-Aftrin«0)~*d8,

o

E(k, 0)=[(l-k2sw?0fd0,

o

F(k,^)=F
1
(k),E(k,^)=E1

(k),

U(l; n, 0)=
f

(l-fc2sin20)
_id0/(l+fl sm J

0),

o

A0 = (l-/.'2sin-0)*

Jacobi and Abel proposed to take F(k, 0) as the

independent variable. Putting u for this, Jacobi

called 6 the amplitude of v, or shortly am )'. Then
sin 6, cos 0, A0 were the sine, cosine, and A of the

amplitude of u, or as he wrote them.

sin am u, cos am it, A am u.

* The expressions F\k, 6), E{k, 6), U{k, n, 6), were called the First,

.Second, and Third Elliptic Integrals respectively.
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He used the .symbol coam u for am(if— u), and also

tan am u, sin coam u, etc.

He changed the meaning of the symbols E, n to

those we have given (Chap. V.), and also brought in

the function Z.

It was proposed by Gudermann to write sn, en, dn
for sin am, cos am, A am, and the notation sc, cd, etc.,

Mas introduced by Dr. Glaisher. Sometimes tn is

written for sc, ctn for cs. The function gd (see § 75,

note) is the amplitude, the modulus being unity. For
the notation of Weierstrass see Chap. VII.

In the further development of the subject other

symbols are wanted. Jacobi used the Greek capitals

G and H: the functions Qu, Hit may be defined as

follows :

—

Gu,= exp( Zv dv

H?( = *Jk . Qu . sn u.

The arbitrary constant in the value of G is not
determined until a later stage.

Some of the properties of the function Qu have been
suggested in the examples to Chapter VI.



MISCELLANEOUS EXAMPLES

(FROM EXAMINATION PAPERS).

1. Prove that

gel " /' _ s(l-//

sd(ic + //)sd(;r - y) = -—
7

'
...

/

10 ,

, x sd x en x - sd y en ycn(x+y) = -T— —=-*—*.
sd ,/• en y - sd ?/ en x

2. Show that

o cnacn/i -cn(a + /?)_dnadn/? — dn(a + /?)SnaSR/
dn(a + /3) &2cn(a + /^

3. Two sets of orthogonal curves (Cartesian ovals) being

defined by the equation

x + Ly = sri~{l(ii + L /•), k

}

,

show that the polar coordinates of any point (u, v) are

given by

cos0=
~ cn(M'

/ ') + ,ln ("> ^'W'', *2

dn(«, &)-cn(M, &)dn(r, //)

sin = -
'

sn ^M *
/i:)sn (

y
'

A:')

dn(M, k) - cn(w, &)dn(#, k')'

I - cn(w, /i
-)cn(v, //)

dn(/", //) + du(u, k)cn{v, //)'
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4. Prove that the functions

(cs u cd u en u - fc^sc u sd u sn u) 2

and (ds m dc u dn w + Z-
L7/-sc u sd w sn w) 2

have periods K and iA\

5. If v = }X

{

?^4 l^A,

€

where a, b, c are positive quantities in descending order of

magnitude, then

e sn2M = a cn% - c,

the modulus being {(a - b)/(a - c)} 2 .

6. Show that

k2sn^(u
1
+u

2 + u3 + u
i)Bn^(u1

+u2
- u

3
- t*4)

x sn ^(w
a
- w., + u

B
- «

4
)sn |(;/ 1

- u
2
- u

?j
+ w4)

d
x
d2d3dA

-
/.-'V-'./' :;

''4 + &2&'2s
1
s
2
s3s4

- &'2

d
x
d2d3dA - ffiafacfa - ^2/c'2s

1
s2s3s4 + &'2

7. Show that the form assumed by a uniform chain of

given length whose ends are at two fixed points is re-

presented by the equation

IS-if = 2kbtm-.t-,
b

when its moment of inertia about the axis of x has a

stationary value.

8. Prove that

cn(B - C)sn(C -A) + dn(B- C)sn(A - B)

+ sn(B - G')cn(C - A)dn(A - B) = 0.

9. Verify that

{ 1 - ffsn-Xc + d)sti\a -b)}{\- fc
2sn2(a + £)sn2

(c - d)}

{ 1 - Fsn2(a + 6)sn2(a - b) } { 1 - Fsn2(c + rf)sn2(c - d)}

is a symmetric function of <i, b, c, d.
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10. Prove that

ji i ,1™ cd-i(l +k)s 1 + />-

d - iksc c - isd

c + isd d + iksc'

where s, c, d denote sn u, en u, dn it respectively.

11. Prove that

, o/
, i v\ D-JcS C-iS- k sn-( ii + tWv ) = = -= =—

,

v
"

; C + lS D + tkS

C-kB-ik'*S D-hC
D-kC C-kD + ik'W

where S=sn2u, G=cn'2u, D= dn2u.

1 2. If x\„ denote sc(«x - W/JCS(WX + u
n)

tnen

a
'4i

a'42a'43a'12a'23a'31 + '''41'''->3 + X4^31 + '';4:/l2
= **•

1 3. If fc
2 = - w (where w2 + w + 1 = 0) then

1 - sn(w - <o
2 )w 1 - sn %/ 1 - co sn i/A

2

1 +sn(to - w-)u 1 +sn u\\ +o)sn a

1 4. If Qu = pit + p( it + to) - jpco,

then ((/»)- = 4#8m + 4(t7
2
- 15jp

2a>)<2u - 1 ig2po - 22t7
3

.

15. Evaluate \(pu — pv) 2da, and express I (pu - pv)~2du

in terms of \{pu - pv)~ ldu.

1G. Find fndttciw.

Prove that

2( 1 + //'-') En + /'-'sn it en u du u - /•"-'»,3 fdn4«

ygfsnttrfij = /^, /, + A^+J\-') + dc^
J 1 + sn u

•2/1 sn u ^/w = log-j—y_.
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17. Show that

log sii a dn = - [-IC - l.STlog k,

k'
log en u du = - \ttK' + \K\og-

,

I log dn u du = AK log k'.

(In the first put amt(= 6 and expand in powers oik.)

18. Prove the formulae

n< r 2k'
I log(l - k2snHb)du = - \ttK' + ^Tlog—

,

log( 1 + dn u)dn = \irK' + §iTlog /,'.

o

19. Prove that

U(u, a) + TL(v, a) - U(u + ,-, a)

= ,

j
{1 -&2sn 2

(?4 + fl)sn 2
(?' + (Q}{l -Fsn%sn-(» + /•-»)}

* to

{ 1 - k2sn 2(u - a)m~(v - a)
}
{ 1 - A:

2sn% sn2(« + ?> + a)}'

20. Expand I snnudu in ascending powers of /r
2

; and

o

thence, or otherwise, prove that

— I sn «f/tt = A
,

| -,—- du.
dk] J dn'-u

(Compare Ex. 12, Chap. IX.)

21. In Weierstrass' notation, if Jh the absolute invariant

as given by the equations

J -I _J_^
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then the periods satisfy the differentia] equation

22. Verify that the expression of Ex. 19 agrees with

that of Ex. 15, Chap. VI., and with that of §67.

23. Find expressions for the arcs of the curves,

/'-// =2/,7-sn
r
±f,

// = ok nc

—

;
—
h

:
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